Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Pattern Analysis and Machine Intelligence Année : 2009

Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval

Résumé

Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state of the art algorithms.
Fichier principal
Vignette du fichier
Liris-3433.pdf (1.52 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01437606 , version 1 (06-03-2017)

Identifiants

  • HAL Id : hal-01437606 , version 1

Citer

Jérôme Revaud, Guillaume Lavoué, Atilla Baskurt. Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 4, 31, pp.627-636. ⟨hal-01437606⟩
138 Consultations
348 Téléchargements

Partager

More