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Improving Zernike Moments Comparison for
Optimal Similarity and Rotation Angle Retrieval

Jérôme Revaud, Guillaume Lavoué and Atilla Baskurt

Abstract—Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability.
However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments
and loses the phase information. The novelty of our approach is to take advantage of the phase information in the
comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more
accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same
complexity as the classical approach. This angle information is particularly of interest for many applications, including
3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one
in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is
greatly improved. Moreover, the rotation angle estimation is also more accurate than state of the art algorithms.

Index Terms—Zernike moments, scene analysis, 3D object recognition, shape

F

1 INTRODUCTION

Zernike moments are widely used to capture global
features of an image in pattern recognition and im-
age analysis. Firstly introduced in computer vision
by Teague [1], this shape descriptor has proved
its superiority over other moment functions [2],
[3] regarding to its description capability and ro-
bustness to noise or deformations. Hence rotation
invariant pattern recognition using Zernike mo-
ments has been extensively studied [4], [5]. Even
very recently, a lot of authors have been working
on these moments, particularly to improve their
computation time [6], [7], [8], [9] or their accuracy
[10].

Practically one Zernike moment is a complex
number that contains two different values: magni-
tude and phase, however, the usual way (i.e. used in
all existing algorithms) of comparing two Zernike
descriptors only considers the moments magni-
tudes (as it brings invariance to rotation). In the
context of 2D and 2D-3D indexing and recogni-
tion, this loss of information is not harmless when
comparing two different patterns, and can induce
erroneous results and impreciseness, as it will be
further illustrated.

Using the phase information of Zernike moments
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The authors are with LIRIS, UMR 5205 CNRS, INSA-Lyon,
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(together with the magnitude) in the comparison
process seems a natural way to improve the similar-
ity measure in terms of robustness against geomet-
ric deformation or noise particularly. However in
that case the resulting comparator is not invariant
anymore to rotation, unless the in-plane rotation
angle between the two patterns is known. Fortu-
nately in this paper we show that the moment
phases can also be used to retrieve this rotation
angle in an optimal way. Finding both information
(i.e. a robust rotation-invariant similarity measure
together with the optimal angle of rotation) can
be of great interest for many applications includ-
ing image registration [11], motion estimation in
video and particularly scene understanding: indeed
recognizing the objects composing the image and
then extracting their in-plane orientation angles
may help to compute their precise 3D pose and
thus to understand accurately the corresponding
3D environment. A lot of work has been done for
angle/similarity recognition using keypoint-based
local descriptors like SIFT [12], however, this kind
of tools works only on textured objects and fails
to describe smooth shapes or drawings (i.e. sketch)
for instance. In such hard description/recognition
cases, global shape descriptors like Zernike mo-
ments are particularly robust, that is the reason why
they have recently been used for rotation invariant
2D/3D object recognition through sketches [13],
[14]. It appears quite relevant to compute the in-
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plane rotation together with the similarity distance
in such 2D/3D indexing scenarios, particularly for
some emerging applications like sketch-based mod-
eling [15].

Apart from us, one approach have focused on the
sub-problem of the rotation angle estimation using
Zernike moments. The method was brought by Kim
and Kim [16] and it proved to be very robust with
respect to noise even for circular symmetric pat-
terns. Nevertheless, the probabilistic model used to
recover the rotation angle has no concrete interpre-
tation and does not correspond to any geometrical
reality, so it does not return any similarity distance.
Besides, this method is based on the hypothesis that
the two patterns are the same (that is, except some
noise and the rotation), which does not always hold
in practice.

In this context, we have developed a new general
and rigorously founded approach for comparing
two Zernike descriptors that takes use of both
magnitude and phase information. Our approach
keeps the same complexity as the standard tech-
nique (Euclidean distance between magnitude val-
ues) but provides a more accurate rotation invari-
ant similarity measure while retrieving the optimal
in-plane rotation angle. Thanks to the adaptabil-
ity of Zernike description, our approach is suited
to compare any kinds of images/patterns: Binary,
gray level or sketch images (i.e. drawings). We
also compared our results with two state-of-the-
art approaches for sketch and object recognition:
the geometric hashing [17] and the deformation
tolerant generalized Hough Transform from Anelli
et al. [18].

The following section concisely presents Zernike
moments. In section 3, we lean upon drawbacks
of the conventional approach to build our method.
The computational efficiency is also a constraint
because the resulting algorithm will be used within
a matching process; we thus detail a fast implemen-
tation in section 4. Finally, we present experimental
results in section 5 and an application to a real
2D/3D indexing scenario in section 6.

2 ZERNIKE MOMENTS

Complex Zernike functions constitute a set of or-
thogonal basis functions mapped over the unit
circle. Zernike moments of a pattern are constructed
by projecting it onto those functions. They share
three main properties:

• The orthogonality: this property ensures that
the contribution of each moment is unique and
independent.

• The rotation invariance: the magnitude of
Zernike moments is independent of any planar
rotation of the pattern around its center of
mass.

• The information compaction: low frequencies
of a pattern are mostly coded into the low
order moments. As a result, relatively small
descriptors are robust to noise or deformations.

Mathematically, Zernike basis functions are defined
with an order p and a repetition q over D =
{(p, q)|0 ≤ p ≤ ∞, |q| ≤ p, |p− q| = even}.

Zpq =
p+ 1
π

∫ ∫
x2+y2≤1

V ∗pq(x, y)f(x, y)∂x∂y (1)

where V ∗pq denotes the complex conjugate of Vpq,
itself defined as:

Vpq(ρ, θ) = Rpq(ρ).eiqθ (2)

and Rpq(ρ) =
p∑

k = |q|
|p− k| even

(−1)
p−k

2
p+k
2 !

p−k
2 !k−q2 !k+q2 !

ρk

From eq. (1) and (2), Zernike moments of a
pattern rotated by an angle α around its origin are
given in polar coordinates as :

Zαpq = Zpqe
iqα (3)

Eq (3) proves the invariance of the magnitude of
Zernike moments to rotation since |Zpqeiqα| = |Zpq|.
Thanks to the property of orthogonality, the recon-
struction of the pattern can be simply expressed as
the sum of every Zernike basis functions weighted
by the corresponding moments:

f̃(x, y) =
∑∑
(p,q)∈D

ZpqVpq(x, y) (4)

3 SIMILARITY MEASURE AND ROTATION AN-
GLE RETRIEVAL

3.1 The classical approach

The usual way of comparing two patterns in the
Zernike space only considers the magnitudes of the
moments [4]. In the reminder of this paper, we will
denote the usual comparator of Zernike descriptors
as the classical one. Formally, this comparator is
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(a) the pattern to retrieve:

 rank  1st     2nd    3rd      4th 

classical comparison 
(without phase)

   7130.2 7345.5   7515.0 8200.9

proposed comparison 
(using phase)

   2110.3 2339.0   2406.4 2683.1

distance to (a)

distance to (a)

Fig. 1. The best four retrievals for the drawing of
a rooster (a) from a database of 200 binary logos.
Results are ordered by similarity measure (a dis-
tance of zero means a complete similarity) for both
comparators.

nothing else than an Euclidean distance between
the magnitudes:

d2 =
∑∑
(p,q)∈D

(|Zpq| − |Z ′pq|)2 (5)

However, the advantage of losing the phase in-
formation - this allows the invariance to rotation
- also brings some drawbacks: The first conse-
quence is that the classical comparator is unable
to retrieve the rotation angle between two similar
patterns as this information is encoded onto the
moments phases. A corollary is that two symmetrical
patterns will be classified as identical since their
moments magnitudes are the same. Consequently,
for an application which has to differentiate sym-
metric patterns (e.g. 2D-3D recognition that aims
to retrieve viewpoint of potentially symmetric 3D
objects like cars or people), the classical comparator
is inoperative.

More generally, one can assume that this missing
information has a negative influence on the re-
trieval efficiency, especially in hard cases like noisy,
deformed or occluded patterns. Our approach is
based on the assumption that using the phase in-
formation may result in a more robust description.
Experiments have confirmed that this hypothesis is
exact whatever the number of moments and for a
wide type of distortions (see section 5). Figure 1
presents a short example of image retrieval from
sketch which illustrates the superiority of the pro-
posed approach upon the classical one.

3.2 The proposed Zernike comparator
In this subsection, we present a new way of com-
paring Zernike moments that takes both magni-
tude and phase information into account. Our new
comparator provides a similarity score more robust
than the classical one and retrieves for free an
accurate angle of rotation between the two images.
The angle is considered to be optimal since the
Euclidean distance between the first image and the
rotated second one is minimized. Let I and J be
two different images, and (J ∗ <φ) be the J image
rotated by φ. The Euclidean distance between I
and (J ∗ <φ) can be expressed as a function of the
rotation angle φ as follows:

d2
I,J(φ) =

∑∑
x2+y2≤1

|I(x, y)− (J ∗ <φ)(x, y)|2 (6)

Thus our objective is to minimize this expres-
sion so as to determine the corresponding an-
gle φ. Eq. (3) has shown that if the set of mo-
ments

{
ZJpq|(p, q) ∈ D

}
represents the J image, then{

ZJpqe
iqφ|(p, q) ∈ D

}
represents J ∗<φ. By replacing

I and (J ∗<φ) in equation (6) by their exact Zernike
reconstruction (4), we obtain eq. (7) (see next page)
where ZIpq and ZJpq represent Zernike moments of
images I and J , respectively, and 〈Vpq, V ∗uv〉 denotes
the scalar product of two Zernike basis functions
over the unit disc. Thanks to the orthogonality
of the basis, this product is null except for the
case where (p, q) = (u, v). In that case, it can be
simplified into: 〈

Vpq, V
∗
pq

〉
=

π

p+ 1
At first glance eq. (7) is not trivial to minimize,

but it can be rewritten into eq. (8) (see next page,
with |Zpq| and [Zpq] respectively the modulus and
the argument of Zpq). Formula (8) points out that
the only parameter whose the distance depends is
φ, which in addition is only present into the cosine
functions. As a consequence, the search for optimal
distance and angle will result in minimizing a sum
of cosines.

Even if in real applications only a subset of
Zernike moments is used (as it brings robustness
to the description), the proposed method remains
valid: simply, it can be seen as a fast way of retriev-
ing the Euclidean distance between the two blurred
patterns (that is, their reconstruction from the sub-
set of moments) using their projection in Zernike
space. The next section focuses on resolving the
minimization so as to insure a low complexity and
a fast computing time.
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d2
I,J(φ) =

∑∑
x2+y2≤1

∣∣∣∣∣∣
∑∑
(p,q)∈D

ZIpq.Vpq(x, y)−
∑∑
(p,q)∈D

ZJpqe
iqφ.Vpq(x, y)

∣∣∣∣∣∣
2

=
∑∑
x2+y2≤1

∣∣∣∣∣∣
∑∑
(p,q)∈D

(ZIpq − ZJpqeiqφ)Vpq(x, y)

∣∣∣∣∣∣
2

=
∑∑
x2+y2≤1


∑∑

(p,q)∈D

(ZIpq − ZJpqeiqφ)Vpq(x, y)

∑∑
(u,v)∈D

(ZIuv − ZJuveivφ)Vuv(x, y)

∗
=
∑∑
x2+y2≤1

 ∑∑
(p,q),(u,v)∈D2

(ZIpq − ZJpqeiqφ)Vpq(x, y) (ZI∗uv − ZJ∗uv e−ivφ)V ∗uv(x, y)


=

∑∑
(p,q),(u,v)∈D2

(ZIpq − ZJpqeiqφ)(ZI∗uv − ZJ∗uv e−ivφ)

∑∑
x2+y2≤1

Vpq(x, y)V ∗uv(x, y)


=

∑∑
(p,q),(u,v)∈D2

(ZIpq − ZJpqeiqφ)(ZI∗uv − ZJ∗uv e−ivφ).

{
〈Vpq, V ∗uv〉 if (p, q) = (u, v),
0 else

=
∑∑
(p,q)∈D

∣∣∣ZIpq − ZJpqeiqφ∣∣∣2 〈Vpq, V ∗pq〉 (7)

d2
I,J(φ) =

∑∑
(p,q)∈D

π

p+ 1

∣∣∣ZIpq − ZJpqeiqφ∣∣∣2
=
∑∑
(p,q)∈D

π

p+ 1

∣∣∣∣∣ZIpq∣∣ ei[ZI
pq] −

∣∣ZJpq∣∣ ei(qφ+[ZJ
pq])
∣∣∣2

=
∑∑
(p,q)∈D

π

p+ 1

∣∣∣ei[ZI
pq]
(∣∣ZIpq∣∣− ∣∣ZJpq∣∣ ei(qφ+[ZJ

pq]−[ZI
pq])
)∣∣∣2

=
∑∑
(p,q)∈D

π

p+ 1

∣∣∣ei[ZI
pq]
∣∣∣2 . ∣∣∣∣∣ZIpq∣∣− ∣∣ZJpq∣∣ ei(qφ+[ZJ

pq]−[ZI
pq])
∣∣∣2

=
∑∑
(p,q)∈D

π

p+ 1

∣∣(∣∣ZIpq∣∣− ∣∣ZJpq∣∣ cos(qφ+ [ZJpq]− [ZIpq])
)
− i
(∣∣ZJpq∣∣ sin(qφ+ [ZJpq]− [ZIpq])

)∣∣2
=
∑∑
(p,q)∈D

π

p+ 1

[(∣∣ZIpq∣∣− ∣∣ZJpq∣∣ cos(qφ+ [ZJpq]− [ZIpq])
)2

+
(∣∣ZJpq∣∣ sin(qφ+ [ZJpq]− [ZIpq])

)2]
=
∑∑
(p,q)∈D

π

p+ 1

[∣∣ZIpq∣∣2 +
∣∣ZJpq∣∣2 − 2

∣∣ZIpqZJpq∣∣ cos(qφ+ [ZJpq]− [ZIpq])
]

(8)

4 EFFICIENT MINIMUM SEARCH

In this section, we describe how to efficiently extract
the global minimum of eq. (8) by restricting the
search using Nyquist-Shannon sampling theorem.
Assuming that the Zernike moments of each image
are known until the N th order, the sum initially
comprises O(N2) cosine terms. Nonetheless, the

sum can be simplified by removing the constant
terms and by aggregating the cosine terms that own
the same frequency:

A1 cos(qφ+B1) +A2 cos(qφ+B2)

= |C| cos(qφ+ [C]) (9)
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where C is a complex that worth A1e
iB1 + A2e

iB2 .
Then, eq. (8) can be equivalently expressed as a sum
of N cosines :

fN (φ) =
N∑
q=1

Aq cos(qφ+Bq) (10)

with Aq ∈ R+ and Bq ∈ [−π, π[.

4.1 Restricting the search of a global minimum

One can notice that fN (φ) is a 2π-periodic function.
Usually, the general technique for finding the min-
imum of a periodic function is a gradient descent.
Indeed, fN (φ)’s first and second derivatives are
easy to compute. However, such functions gener-
ally have many local minima whereas our approach
requires to find the global one. One expensive solu-
tion is then to find every local minima and maxima
with the gradient descent method by following the
function from φ = 0 to 2π.

However, fN (φ) owns a discrete Fourier spec-
trum bounded by a maximal frequency fMAX

N =
N/2π. Hence, fN (φ) has at most N local max-
ima and N local minima in [0, 2π[. Moreover,
the Nyquist–Shannon sampling theorem teaches
us that the function can not change substantially
between two consecutive sampling points taken
at the Nyquist frequency F = 1/T = N/π. The
minimal distance between two consecutive minima
is thus bounded by π/N . The initial starting points
for finding every possible minima with a gradient
descent can thus be equally scattered in 2N points.
Moreover, by cutting fN into 4N intervals, we
ensure that only one minimum or one maximum
is present in each interval (see fig. 2).

4.2 Optimized minima retrieval

Our approach for optimizing the gradient descent
takes advantage of the previously formulated prop-
erties. fN is sampled by 4N points equally spread
between [0, 2π[: {xn = nπ/2N | 0 ≤ n < 4N}. We
compute fN ’s differential, denoted as f ′N , for each
of those points. Section 4.1 ensures that if and only
if a minimum is present between two consecu-
tive points [xn, xn+1], then f ′N (xn) is negative and
f ′N (xn+1) is positive (see fig. 2). Moreover, those dif-
ferential values enable to approximate the abscissa
of the local minimum. Indeed, by approximating fN
between [xn, xn+1] as a second degree polynomial,

then the minimum abscissa can be evaluated at:

xminimum =
xn+1f

′
N (xn)− xnf ′N (xn+1)

f ′N (xn)− f ′N (xn+1)

= xn +
π

2N
f ′N (xn)

f ′N (xn)− f ′N (xn+1)
(11)

Fig. 2. A random function f3 cut into 4N = 12
intervals. Each interval contains at most one local
minimum. When a minimum exists in the interval, the
left derivative is negative and the right derivative is
positive. For each minimum, a black cross figures
the minimum position approximated with second
order polynomial.

For our application, the gradient descent algo-
rithm does not need to be iterated to reach a high
precision since this simple approximation (repre-
sented as crosses in fig. 2) is precise enough for
our purpose (cf. experimental results in 5.1). Finally,
the computational complexity of our approach for
the distance minimization using the approximation
is O(N2). Our approach has then the same com-
putational complexity than the classical Zernike
comparator (eq. (5)).

5 EXPERIMENTAL RESULTS

This section describes several experiments that il-
lustrates:
• The efficiency of our minimum search (section

5.1).
• A comparison of our approach with the clas-

sical one in terms of similarity accuracy, and
retrieval performance (section 5.2.2).

• A comparison of our approach with two state-
of-the-art methods: geometric hashing and
generalized Hough Transform (section 5.2.3).
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φ ≈ φ̃ φ 6= φ̃

N = 6
Occurrences 9,986 14
RMS error on φ̃ 0.81◦ 107.6◦

RMS error on f̃N 0.197% 0.537%

N = 12
Occurrences 9,991 9
RMS error on φ̃ 0.36◦ 119.4◦

RMS error on f̃N 0.122% 0.472%

N = 24
Occurrences 9,986 14
RMS error on φ̃ 0.16◦ 98.8◦

RMS error on f̃N 0.083% 0.215%

TABLE 1
The average RMS errors corresponding to the

approximation of the minimum position for various N .

• A comparison of our approach with the state
of the art angle estimation algorithm (section
5.3).

5.1 Efficient minimum search
In order to demonstrate the efficiency of our min-
imum search algorithm (see section 4), a set of
30,000 random functions fN (φ) (see eq. (10)) has
been created. For each of three different bandwidths
N = {6, 12, 24}, there are 10,000 functions with ran-
dom Ap and Bp. Firstly, we have computed for each
function the exact solution φ and the approximation
φ̃ using respectively an exhaustive gradient descent
and the proposed optimization. Secondly, we have
compared both results and distinguished two types
of situation:

1) The global minimum is correctly found by our
approach: φ ≈ φ̃.

2) Another minimum is found.
The second case derives from situations where the
function admits more than one solution: In term of
Zernike description, when there are s−1 secondary
minima as small as the global one, that concretely
means that the pattern is s-fold symmetric. For
instance, a circular symmetric (2-fold symmetric)
pattern can be rotated in an equivalent way by two
different angles {α, α+ 180◦}. In reality, what truly
determines the rightness of the retrieved angle is
the vertical error on the depth of the approximated
minimum.

Table 1 details the RMS errors on the angle φ̃
and on the depth of the minimum fN (φ̃) = f̃N for
both situations. The proportion of occurrences of
the second case (the retrieved minimum is not the
global one) is comprised below 0.15%. In the first
case, the RMS errors of the angle and the minimum

depth do not run over 0.81◦ and 0.2%, respectively,
even for N = 6 (when the approximation is the
coarser). In the second case, the RMS error of
the angle is high because a different minimum is
retrieved. However, the depth of this minimum is
similar to that of the global one since the maximum
RMS error of f̃N is comprised below 1% in the
worst case. That means that the minimum found
may not be the global one but is really close in
terms of depth.

As a conclusion, our minimum search seems
precise enough (less than 1° of error for most of
the cases) even for the case N = 6 for which
the approximation is the coarser; this correspond
to 16 moments. However the appropriate number
of moment depends on the application, since it
will also influence the robustness of the similarity
measure.

5.2 Comparative study of similarity accuracy
We have conducted experiments to test the effi-
ciency of the proposed comparator with respect to
the state of the art, in terms of similarity accuracy
and robustness. To that aim, we have gathered 502
logo images (about 25% are binary images and
others are gray level images). Some of them are
shown in figure 3. These images were cropped
and re-sized in order to fit the size of a square of
100 × 100 pixels. Then, synthetic distorted images
were generated for each of these original patterns.
What is denoted as distortions include additive
uniform noise, non-affine geometric deformation1,
occlusion and translation. Examples of such dis-
torted patterns at various levels are displayed in
figure 4. These four types of distortion, applied
at 19 different degrees, have been used to create
four corresponding databases. In each database, the
set of one original pattern and its 19 gradually
distorted versions constitutes one class. Hence, one
can see each test database as a collection of 10,040
different patterns divided into 502 classes of 20
elements.

5.2.1 Databases construction
For each test database, the distortion is applied
gradually among 19 levels. The four types of dis-
tortion are:

1) An additive uniform noise added to the pat-
terns such that the SNR varies from 30dB

1. the case of affine deformation has already been investi-
gated in [19]
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Fig. 3. Some of the 502 patterns used in the
experiments.

(level 0) to 1.5dB (level 19). The resulting
values are bounded in [0,255].

2) A non-affine smooth deformation (i.e. a geo-
metric deformation) whose amplitude varies
locally from 0 (level 0) to 25 pixels (level
19) at most. This deformation is generated
by two 100x100 displacement maps Dx and
Dy that are initialized to 0, except for 8
random cells where we create vectors of
the given amplitude and random directions.
These 8 deformation vectors are then dif-
fused until convergence (principle of the heat
diffusion). The deformation function consists
in DeformedPattern(x, y) = Pattern(x +
Dx(x, y), y + Dy(x, y)). We used bi-linear in-
terpolation for non-integer values of displace-
ment.

3) A partial occlusion: we chose another random
pattern and we paste it on the original one
such that the occluded part varies from 0
(level 0) to 47.5 percents (level 19). The white
parts of the pasted pattern are set transparent.

4) A translation. Its direction is random and its
amplitude is comprised between 0 (level 0)
and 7 pixels (level 19).

5.2.2 Comparison with the classical Zernike com-
parator

In order to conduct an exhaustive evaluation of
our approach with respect to the classical way
of comparing two Zernike descriptors, we have

Fig. 4. Illustration of the four types of distortion.
From left to right the four groups of distortions:
additive noise, deformation, occlusion, translation. In
each group the 6th, 13th and 19th distortion levels are
presented. The images are inverted (black becomes
white) for visualization purposes.

considered the similarity measure evaluation as a
classification problem like in [4]. We have made two
types of measurement using both comparators on
the four databases:
• The recall-precision graph considering the pre-

viously defined classes. This measure accounts
for the classification capability of our com-
parator and allows its complete evaluation for
indexing issues.

• The error rate on first retrieval: knowing a
distorted pattern, we try to retrieve the original
one. Contrary to the recall-precision measure-
ment, this one corresponds to a recognition sce-
nario where only the first retrieval is important.

The Zernike moments of the patterns are ex-
tracted from the center of mass of the patterns in
the case of noise and deformation, and from the
center of the pictures for the cases of occlusion and
translation since it has no sense to compute a center
of mass when the pattern is occluded. All experi-
ments were performed for three different numbers
of moments : 25 (up to 8thorder), 49 (12thorder)
and 81 (16thorder), which are representative of the
numbers of Zernike moments used in the literature.
In all cases, results were about the same so we
decided to only illustrate the 12thorder case.

5.2.2.1 Recall Vs Precision: A good way of
measuring the efficiency of our approach in a global
indexing framework is to evaluate the recall vs.
precision of both comparators (see fig. 5). The ex-
periment consists in comparing a pattern P of the
database to every others, then to order the results
by similarity, and finally to count the number A of
relevant patterns (i.e. from the same class than P )
in the first N retrieved patterns. The precision is
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Fig. 5. Recall-Precision curves for 49 moments (i.e.
up to 12thorder) on the four databases: additive ran-
dom noise, non-affine deformation, occlusion, and
translation. Each database contains 10,040 patterns
divided into 502 classes of one original and 19
distorted versions.

then equal to A/N and the recall to A/Amax, with
Amax the size of the corresponding class. The results
(averaged over all patterns from all the classes of
the corresponding database) are illustrated in fig.
5 for each database (noise, deformation, occlusion,
translation); the precision is presented for each
value of recall. Practically, the higher is the curve,
the better is the similarity measure. The first tier
(i.e. recall value for N = Amax) and second tier (i.e.
recall value for N = 2Amax) measures have also
been computed for each graph (see table 2).

As shown by the curves, the proposed compara-
tor performs always better than the classical one.
The gain is particularly high for additive noise and
deformation, where the proposed method performs
up to respectively 6.8% and 5.6% better in terms of
the first tier measure.

5.2.2.2 Recognition performances: We have
also conducted recognition experiments where the
objective, starting from each of the 10,040 images of
each database, is to retrieve the correct correspond-
ing original pattern among the 502 original ones.
The figure 6 displays the percentage of recognition
errors (an erroneous pattern is returned in first
position) for the classical and proposed comparator
as a function of the distortion level. Globally, the
proposed comparator is making about twice less
errors than the classical one for medium distortions,
except for the case of occlusion where our method
makes about 15% less errors only.
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Fig. 6. The proportion of recognition errors when
trying to retrieve the original pattern (among the 502
ones) from a distorted version using the classical
comparator and the proposed comparator. The per-
centage of errors is highlighted for each method at
the 15th distortion level.

In conclusion, the use of both magnitude and
phase during comparison much improves the ef-
ficiency of the descriptor in terms of classification
and recognition. Indeed Recall-Precision measures
have shown that the proposed method better clas-
sifies the set of patterns than the classical com-
parator in spite of huge distortions. Besides there
were about twice less recognition errors, in our
second experiment, than with the classical method
for medium distortion strengths.

5.2.3 Comparison with geometric hashing and
generalized Hough transform
We have also compared our approach with two
state-of-the-art methods for sketch and object recog-
nition: the geometric hashing [17] and the recent
deformation tolerant generalized Hough Transform
from Anelli et al. [18]. The geometric hashing is
a well-known indexing technique that is used to
quickly find matches between two sets of fea-
tures (e.g. points). On the contrary, the generalized
Hough transform is an object identification tech-
nique suitable for matching a shape contour model
with unsegmented images: edges are extracted in
the image and each edge point casts a vote in the
space of the parameters (x and y position of the ob-
ject to find). Anelli et al. have added two extra steps
after the voting phase: 1) the votes are clustered
in order to deal with small local deformations and
then 2) the shape segmentation is further verified
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Noise Deformation Occlusion Translation
1st tier 2nd tier 1st tier 2nd tier 1st tier 2nd tier 1st tier 2nd tier

Classical comparator 82.9% 86.2% 77.9% 84.8% 44.2% 50.8% 68.7% 75.9%
Proposed comparator 89.7% 92.0% 83.5% 88.9% 47.2% 53.3% 71.6% 78.3%

Difference +6.8% +5.9% +5.6% +4.1% +3.0% +2.5% +2.9% +2.4%

TABLE 2
Comparison of the first tier and second tier measures for each database.

by back-projecting the image segments on the shape
model and computing the model coverage score.

• For the geometric hashing, we need feature
points, hence we have extracted Harris [20]
and DoG keypoints [21], [12] in each pattern.
An example of pattern with its keypoints is
presented on figure 7. The descriptor for a
given pattern consists of a list of its 15 strongest
keypoints in terms of response value. Then,
we have trained a hash table for each type
of distortion. In the retrieval step, we begin
by extracting the 25 strongest keypoints of
the pattern to identify (we take more than 15
because the presence of noise can add new
keypoints), and we successively project them
on the hash tables of the learned patterns for
different random basis (50 times). The best
scores are stored for each learned pattern and
it constitutes at the end the final matching
scores. We deliberately chose small values for
the number of keypoints and iterations so that
a comparison is tractable in terms of time (see
table 3).

• In the case of the deformation tolerant GHT
(DT-GHT) from Anelli et al. [18], each pattern
was first indexed (i.e. canny edges extraction,
segmentation of the edges, building of a R-
table). Then to compare two patterns, we sim-
ply search the first one (the model) into the
second one. This returns a matching score be-
tween 0 and 1 (1 means perfect match).

In order to properly compare our Zernike com-
parator with these methods, we have evaluated the
recall vs. precision scores. However the comparison
steps for geometric hashing and Hough transform
are both quite slow so it was not possible to process
the 10, 0002 comparisons required for the recall-
precision measures. As a consequence, we deliber-
ately sampled each database into 5 deformations
levels (3rd, 7th, 11th, 15th and 19th) × 100 patterns
instead of 502, with each type of pattern (gray level
/ black & white) equally sampled. Each of the four

Fig. 7. 15 strongest keypoints of a pattern detected
by the Harris corner detector (blue crosses) and the
extrema in scale-space of Dog (red circles)

Method time (s)

Zernike classic 0.002
Zernike proposed 0.057

DT-GHT 37.2
Geometric Hashing 26.9

TABLE 3
Average processing times for 1000 comparisons on

a 2 GHz computer for similarity calculation with
each method

databases thus contains 500 different elements.
5.2.3.1 Timing Analysis: Table 3 gives a com-

parison of the similarity calculation processing time
for each method. Even if our method is slower
than the classical Euclidean comparison, its com-
plexity is the same (O(order2) ) and both processing
times are very low (less than 60 milliseconds for
1000 comparisons for our approach). However the
DT-GHT and the geometric hashing are several
orders of magnitude slower (37 and 27 seconds
respectively for 1000 comparisons). With a num-
ber of comparisons of 5002 per database for the
recall-precision experiment, it still required about
10 hours to process the four databases for the DT-
GHT or the geometric hashing against less than one
minute for Zernike experiments.

5.2.3.2 Recall Vs Precision: Figure 8 and table
4 illustrate the results.

In the case of translation, the geometric hashing



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, APRIL 2008 10

Noise Deformation Occlusion Translation
1st tier 2nd tier 1st tier 2nd tier 1st tier 2nd tier 1st tier 2nd tier

Zernike proposed 93.4% 95.6% 88.6% 93.6% 52.9% 60.6% 78.0% 85.2%
DT-GHT 75.5% 79.4% 88.4% 93.6% 43.5% 49.4% 96.5% 98.4%
Hashing 62.0% 63.6% 57.2% 60.2% 47.8% 49.9% 86.9% 87.4%

TABLE 4
Comparison of the first tier and second tier measures for each comparators and for each distortion.
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Fig. 8. Recall-Precision curves on the four re-
duced databases for the following methods: pro-
posed Zernike, DT-GHT, geometric hashing. Each
database contains 500 patterns divided into 100
classes of one original and 4 distorted versions.

and DT-GHT approaches perform uppermost due
to their invariance in position (however the geomet-
ric hashing is not so good because of the interpola-
tion noise), but it can be noticed that the proposed
Zernike method does not perform so bad (almost
80% on the first tier measure). For every other
distortions, our approach performs better than DT-
GHT and geometric hashing in terms of the first
and second tier measures ; in the case of noise,
the proposed method works largely better since
the noise is localized in the high frequencies and
hence has a small effect on the low order Zernike
moments. The geometric hashing achieves low per-
formance in all cases except for translation since the
keypoint response values and locations are strongly
disturbed when the images are distorted.

5.3 Rotation angle retrieval
We have conducted experiments to demonstrate the
accuracy of our approach in the specific case of rota-
tion angle estimation between similar but distorted

patterns. We have performed the experiment on the
previous set of 502 logo images. The images were
rotated by random angles. Then, various distortions
(the same as in section 5.2) were applied to each
rotated pattern. The distortion levels, however, are
twice smaller than in the previous section otherwise
images would have been too much different to be
put in correspondence by a rotation. Then, we have
estimated the rotation angle with respect to the
original pattern using the proposed algorithm and
the most robust and acknowledged method in the
state of the art: the Kim and Kim robust estimator
[16]. The total number of test images is thus 200,800:
502 (the number of original patterns) × 10 (the
number of rotations) × 10 (the number of distortion
levels) × 4 (the number of types of distortion).

To compare to the estimator from Kim and Kim
[16], we have used the same number of Zernike
moments than them: 25 moments were computed
up to order 8. For each of the four databases (noise,
deformation, occlusion, translation), we have com-
puted the root mean square (RMS) error of the
retrieved angles using each algorithm; results are
presented in table 5. The RMS error using our
method is systematically lower than for the es-
timator from Kim and Kim, for all the types of
distortion. In particular, in the case of additive noise
and deformation, the proposed method provides
results whose accuracy is about twice better than
with the estimator from Kim and Kim. The occlu-
sion and translation cases yields an important RMS
error: in the first case, this comes from the fact
that sometimes some crucial parts of the pattern
in terms of rotation evidences are occluded ; in the
second case this is caused by the displacement of
the rotation center.

6 2D-3D OBJECT RECOGNITION FROM HAND-
DRAWN SKETCH

The proposed algorithm has been tested within
a real industrial application: the automatic tran-
scription of sketched storyboards into reconstructed
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No distortion Additive noise Deformation Occlusion Translation
Kim and Kim method 0.61° 1.13° 2.96° 27.3° 17.1°

Proposed method 0.57° 0.42° 1.62° 23.4° 12.8°

TABLE 5
The average RMS error of rotation angle using the estimator from Kim and Kim [16]and the proposed

method.

3D scenes. An example of such scenario is illus-
trated in figure 9: a 3D scene has been generated
from a hand-drawn storyboard. Formally, an object
database contains various 3D models (as polygonal
meshes); on the other side, the cartoonist draws a
2D storyboard by digitally sketching the objects of
the scene he has in mind. Then the objective is to
recognize each 3D model from the corresponding
piece of sketch, along with its 3D viewing angle, its
scale and its rotation angle in the drawing plane, so
as to automatically and correctly place it in the 3D
scene. To obtain this result, an important number of
views of each 3D model is indexed using Zernike
moments like in [13] (about 50 views per object).
We do not compute Zernike moments on the whole
view, but on a bounding circle containing at least
70% of the pattern. We limit the indexed surface for
the following reasons:

1) we try to reduce the surface potentially dis-
turbed by the background during retrieval

2) such approach may bring some kind of ro-
bustness regarding small occlusions. A com-
plete robustness to occlusion could be reached
if each model view was described by several
Zernike circles of various scales and positions,
however, this development is out of the scope
of this paper.

Once we have described all the 3D model views, we
search them in the sketched story-board with a two-
pass process to speed up the recognition. The first
pass aims at finding a set of raw correspondences
and the second pass refines this set. Without loss
of generality, we will now describe the search of
one given model into the sketch: in the first pass,
we scan the whole sketched story-board with a
circular window at different scales and positions.
For each position, we describe the window using
Zernike moments and we store the model view
which achieves the smallest distance with the local
descriptor according to our comparator. We use a
standard non-maxima suppression technique in the
resulting scale-space of distances and we apply a
first threshold to the obtained maxima: we obtain a

set of potential matches. This first search is processed
for a reduced set of positions and scales in order
to reduce the processing time: 8 scales, starting
from 400× 400 pixels until 1400× 1400 pixels, and
for each scale the window slides over the image
with a step width of windowSize/15 (since that
corresponds to a translation whose amplitude is
correctly retrieved in section 5). In our experiment,
the story-board dimension is 3350 × 2260 and this
greedy recognition takes about 2 minutes on a 2Ghz
machine. The computation of Zernike moments is
made faster by precomputing a set of 100×100
Zernike filters and by applying a fast smoothing
approach along scales (like pyramids of Gaussian
in [12]) to quickly sample each 100×100 window.
As we saw in section 5.2, Zernike distance is not
so invariant to translation, so we refine the search
during a second pass: for each potential match we
search locally around its position in the scale-space
(the steps widths are decreased both in position
and scale). This allows to find the optimal position
for each potential match and thus to make the
difference between true and false positive after a
second thresholding. This second pass takes about
30s per potential match (there is typically 4-6 po-
tential matches per storyboard image).

Moreover, we assume that the 3D models are ap-
proximately vertically positioned on an horizontal
flat ground, which means that their 3D vertical axis
are probably also vertical in the picture. Since our
method provides not only the similarity but also
the the rotation angle, we are able to eliminate from
the first pass further false positives which could not
be eliminated by the classical Zernike comparator
alone. Recognition results are presented in the fig-
ure 10. Note that all the bushes are not detected: this
is caused by the fact that sometimes their sketch
deviates too much from their 3D model. Even if
there are slight errors in the placement estimation,
the recognition results are still acceptable.

For such an application, the estimations are sig-
nificantly better and more stable with the proposed
comparator than with the classical comparator cou-
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pled with the in-plane rotation estimator from [16],
which is less reliable when it has to estimate a
rotation angle between two different patterns (see
5.3).

  

…

transcription
 

…

object and pose 
recognition

A storyboard box Expected reconstructed 
3D scene

Some indexed views of the trailer

Library of 3D objects

The concerned part

Fig. 9. Example of 2D/3D object recognition appli-
cation: reconstruction of a 3D scene from a hand-
drawn 2D storyboard associated with a 3D model
database. On the top, the recognized 3D model (on
the right) is the best retrieved result between the
drawing (on the left) and the whole set of indexed
views, using the proposed Zernike comparator. Do-
ing so, the 3D pose and the in-plane rotation angle
are retrieved in the same time and thereafter allows
the 3D reconstruction.

Fig. 10. Recognition results for the circus tent, the
trailer and the bushes pasted on the sketch image
after edge extraction. No human intervention was
needed to obtain this result.

7 SUMMARY AND DISCUSSION

We have presented an efficient comparator of
Zernike descriptors whose novelty is to take ad-
vantage of the phase information in the compar-
ison process while still preserving the invariance
to rotation. The provided similarity measure is
more robust to distortions (especially geometrical
deformation and noise). The recognition errors are
also about twice less important for medium dis-
tortions than with the classical comparator (i.e. the
Euclidean distance between Zernike magnitudes).
Moreover, our approach has the same O(order2)
complexity than the classical one. Finally, it pro-
vides for free an estimation of the rotation angle
that outperforms the robust estimator from Kim
and Kim [16]. To conclude with, this novel theo-
retical contribution to the Zernike framework can
apply to any application already using Zernike
moments. It is worth noting that it can also apply to
the pseudo-Zernike moments [22] as both theories
share almost the same background.
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