Towards incremental deep learning: multi-level change detection in a hierarchical recognition architecture - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Towards incremental deep learning: multi-level change detection in a hierarchical recognition architecture

Thomas Hecht

Résumé

We present a trainable hierarchical architecture capable of detecting newness (or outliers) at all hierarchical levels. This contribution paves the way for deep neural architectures that are able to learn in an incremental fashion, for which the ability to detect newness is an indispensable prerequisite. We verify the ability to detect newness by conducting experiments on the MNIST database, where we introduce either localized changes, by adding noise to a small patch of the input, or global changes, by changing the global arrangement of local patterns which is not detectable at the local level.
Fichier principal
Vignette du fichier
article.pdf (3.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01418132 , version 1 (16-12-2016)

Identifiants

  • HAL Id : hal-01418132 , version 1

Citer

Thomas Hecht, Alexander Gepperth. Towards incremental deep learning: multi-level change detection in a hierarchical recognition architecture. European Symposium on Artificial Neural Networks (ESANN), 2016, Bruges, Belgium. ⟨hal-01418132⟩
189 Consultations
209 Téléchargements

Partager

More