Dynamic attention priors: a new and efficient concept for improving object detection - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2016

Dynamic attention priors: a new and efficient concept for improving object detection

Résumé

Recent psychophysical evidence in humans suggests that visual attention is a highly dynamic and predictive process involving precise models of object tra-jectories. We present a proof-of-concept that such predictive spatial attention can benefit a technical system solving a challenging visual object detection task. To this end, we introduce a Bayes-like integration of so-called dynamic attention priors (DAPs) and dense detection likelihoods, which get enhanced at predicted object positions obtained by the extrapolation of trajectories. Using annotated video sequences of pedestrians in a parking lot setting, we quantitatively show that DAPs can improve detection performance significantly as compared to a baseline condition relying purely on pattern analysis.
Fichier principal
Vignette du fichier
paper.pdf (3.72 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01418128 , version 1 (16-12-2016)

Identifiants

Citer

Alexander Gepperth, Michael Garcia Ortiz, Egor Sattarov, Bernd Heisele. Dynamic attention priors: a new and efficient concept for improving object detection. Neurocomputing, 2016, 197, pp.14 - 28. ⟨10.1016/j.neucom.2016.01.036⟩. ⟨hal-01418128⟩
223 Consultations
141 Téléchargements

Altmetric

Partager

More