TWO MORE CHARACTERIZATIONS OF K-TRIVIALITY - Archive ouverte HAL
Article Dans Une Revue Notre Dame Journal of Formal Logic Année : 2016

TWO MORE CHARACTERIZATIONS OF K-TRIVIALITY

Résumé

We give two new characterizations of K-triviality. We show that if for all Y such that Ω is Y-random, Ω is (Y ⊕ A)-random, then A is K-trivial. The other direction was proved by Stephan and Yu, giving us the first titular characterization of K-triviality and answering a question of Yu. We also prove that if A is K-trivial, then for all Y such that Ω is Y-random, (Y ⊕ A) ≡ LR Y. This answers a question of Merkle. The other direction is immediate, so we have the second characterization of K-triviality. The proof of the first characterization uses a new cupping result. We prove that if A is not LR below B, then for every set X there is a B-random set Y such that X is computable from Y ⊕ A.
Fichier principal
Vignette du fichier
preserving.pdf (288.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01397290 , version 1 (15-11-2016)

Identifiants

  • HAL Id : hal-01397290 , version 1

Citer

Noam Greenberg, Joseph S Miller, Benoit Monin, Daniel Turetsky. TWO MORE CHARACTERIZATIONS OF K-TRIVIALITY. Notre Dame Journal of Formal Logic, 2016. ⟨hal-01397290⟩

Collections

LACL UPEC
130 Consultations
121 Téléchargements

Partager

More