Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2016

Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition

Résumé

In this paper we propose a supervised object recognition method using new global features and inspired by the model of the human primary visual cortex V1 as the semidiscrete roto-translation group $SE(2,N)=\mathbb Z_N\rtimes \mathbb{R}^2$. The proposed technique is based on generalized Fourier descriptors on the latter group, which are invariant to natural geometric transformations (rotations, translations). These descriptors are then used to feed an SVM classifier. We have tested our method against the COIL-100 image database and the ORL face database, and compared it with other techniques based on traditional descriptors, global and local. The obtained results have shown that our approach looks extremely efficient and stable to noise, in presence of which it outperforms the other techniques analyzed in the paper.
Fichier principal
Vignette du fichier
1507.06617.pdf (470.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01383846 , version 1 (06-10-2023)

Identifiants

Citer

Amine Bohi, Dario Prandi, Vincente Guis, Frédéric Bouchara, Jean-Paul Gauthier. Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition. Journal of Mathematical Imaging and Vision, 2016, pp.1-17. ⟨10.1007/s10851-016-0669-1⟩. ⟨hal-01383846⟩
550 Consultations
27 Téléchargements

Altmetric

Partager

More