Convergence Rate Analysis of the Majorize-Minimize Subspace Algorithm - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2016

Convergence Rate Analysis of the Majorize-Minimize Subspace Algorithm

Résumé

State-of-the-art methods for solving smooth optimization problems are nonlinear conjugate gradient, low memory BFGS, and majorize-minimize (MM) subspace algorithms. The MM subspace algorithm that has been introduced more recently has shown good practical performance when compared with other methods on various optimization problems arising in signal and image processing. However, to the best of our knowledge, no general result exists concerning the theoretical convergence rate of the MM subspace algorithm. This paper aims at deriving such convergence rates both for batch and online versions of the and in particular, discusses the influence of the choice of the subspace.
Fichier principal
Vignette du fichier
ARXIV_3MGrate_v3.pdf (159.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01373641 , version 1 (24-10-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Emilie Chouzenoux, Jean-Christophe Pesquet. Convergence Rate Analysis of the Majorize-Minimize Subspace Algorithm. IEEE Signal Processing Letters, 2016, 23 (9), pp.1284 - 1288. ⟨10.1109/LSP.2016.2593589⟩. ⟨hal-01373641⟩
215 Consultations
352 Téléchargements

Altmetric

Partager

More