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September 25, 2016

Abstract

State-of-the-art methods for solving smooth optimization problems are nonlinear conju-
gate gradient, low memory BFGS, and Majorize-Minimize (MM) subspace algorithms. The
MM subspace algorithm which has been introduced more recently has shown good practical
performance when compared with other methods on various optimization problems arising
in signal and image processing. However, to the best of our knowledge, no general result ex-
ists concerning the theoretical convergence rate of the MM subspace algorithm. This paper
aims at deriving such convergence rates both for batch and online versions of the algorithm
and, in particular, discusses the influence of the choice of the subspace.

Keywords : convergence rate, optimization, subspace algorithms, memory gradient methods, descent

methods, majorization-minimization, online optimization, learning.

1 Introduction

The Majorize-Minimize (MM) subspace algorithm [1] is based on the idea of constructing, at the
current iteration, a quadratic majorizing approximation of the cost function of interest [2], and
generating the next iterate by minimizing this surrogate function within a subspace spanned by
few directions [3–5]. Note that the MM subspace algorithm can be viewed as a special instance
of nonlinear conjugate gradient (NLCG) [6] with closed form formula for the stepsize and con-
jugacy parameter, or as a particular low memory BFGS (L-BFGS) algorithm [7] with a specific
combination of memory directions. The MM subspace algorithm enjoys nice convergence prop-
erties [8], and shows good performance in practice, when compared with NLCG, L-BFGS, and
also with graph-cut based discrete optimization methods, and proximal algorithms [1, 9, 10].
It has recently been extended to the online case when only a stochastic approximation of the
criterion is employed at each iteration [11]. All these works illustrate the fact that the choice
of the subspace has a major impact on the practical convergence speed of the algorithm (see,
for instance [1, Section 5], [8, Section 5.1]). In particular, it seems that the best performance
is obtained for the memory gradient subspace [12], spanned by the current gradient and the
previous direction, leading to the so-called MM Memory Gradient (3MG) algorithm. However,
only an analysis concerning the convergence rates of half-quadratic algorithms (corresponding
to the case when the subspace spans the whole Euclidean space) is available [13, 14].
Section 2 describes the general form of the MM subspace algorithm and its main known prop-
erties. In Section 3, a convergence rate analysis is performed for both batch and online versions
of the algorithm for minimizing a wide class of strongly convex cost functions.

∗E. Chouzenoux (corresponding author) and J.-C. Pesquet are with the Laboratoire d’Informatique Gas-
pard Monge, UMR CNRS 8049, Université Paris-Est, 77454 Marne la Vallée Cedex 2, France. E-mail:
emilie.chouzenoux@univ-paris-est.fr. This work was supported by the CNRS Imag’In project under grant
2015 OPTIMISME, and by the CNRS Mastodons project under grant 2016 TABASCO.
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2 MM subspace algorithm

2.1 Optimization problem

In this paper, we will be interested in the minimization of the penalized quadratic cost function:

F : RN → R : h 7→ 1

2
h⊤Rh− r⊤h+Ψ(h), (1)

where r ∈ R
N , R ∈ R

N×N is a symmetric positive definite matrix, and Ψ is a lower-bounded
twice-continuously differentiable convex function. In this paper, it will be assumed that F is
only accessible through a sequence (Fn)n>1 of approximations estimated in an online manner,
such that, for every n ∈ N

∗,

Fn : R
N → R : h 7→ 1

2
h⊤Rnh− r⊤n h+Ψ(h), (2)

where the vector rn and the symmetric nonnegative definite matrix Rn are approximations of
r and R. For simplicity, we will suppose that

Assumption 1.

(i) (‖rn − rn+1‖)n>1 and (‖Rn −Rn+1‖)n>1 are summable sequences,

(ii) (rn)n>1, and (Rn)n>1 converge to r and R, respectively.

It is worth emphasizing that Assumption 1 encompasses the batch case when Fn ≡ F .
Moreover, it should be pointed out that all the results presented subsequently can be easily
extended to a stochastic framework where rn and Rn are consistent statistical estimates of r
and R, and convergence arises almost surely.

2.2 Majorant function

At each iteration n ∈ N
∗ of the MM subspace algorithm, the available estimate Fn of F is

replaced by a surrogate function Θn(·,hn) based on the current point hn (computed at the
previous iteration). This surrogate function [15–17] must be such that

(∀h ∈ R
N ) Fn(h)− Fn(hn) 6 Θn(h,hn)−Θn(hn,hn). (3)

We assume that Θn(·,hn) is a quadratic function of the form

(∀h ∈ R
N ) Θn(h,hn) = Fn(hn) +∇Fn(hn)

⊤(h− hn)

+
1

2
(h− hn)

⊤An(hn)(h− hn), (4)

where An(hn) = Rn + B(hn) and B(hn) ∈ R
N×N is some symmetric nonnegative definite

matrix (see [18–22] for examples).

2.3 MM subspace algorithm

The MM subspace algorithm consists of defining the following sequence of vectors (hn)n>1:

(∀n ∈ N
∗) hn+1 ∈ Argmin

h∈ranDn

Θn(h,hn), (5)
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where h1 is set to an initial value, and ranDn is the range of matrix Dn ∈ R
N×Mn with

Mn > 1, constructed in such a way that the steepest descent direction −∇Fn(hn) belongs to
ranDn. Several choices have been proposed in the literature for matrices (Dn)n∈N∗ . On the
one hand, if, for every n ∈ N

∗, rank(Dn) = N , Algorithm (5) becomes equivalent to a half-
quadratic method with unit stepsize [13, 23, 24]. Half-quadratic algorithms are known to be
effective optimization methods, but the resolution of the minimization subproblem involved in
(5) requires the inversion of matrix An(hn) which may have a high computational cost. On the
other hand, if for every n ∈ N

∗, Dn reduces to [−∇Fn(hn),hn], then (5) reads: for every n ∈ N
∗

hn+1 = un,2hn − un,1∇Fn(hn), where (un,1, un,2) ∈ R
2. In the special case when un,2 = 1, we

recover the form of a gradient-like algorithm with step-size un,1 [25, 26]. An intermediate size
subspace matrix is obtained by choosing, for every n > 1, Dn = [−∇Fn(hn),hn,hn − hn−1].
This particular choice for the subspace yields the 3MG algorithm [8, 11].

2.4 Convergence result

The convergence of the MM subspace Algorithm (5) has been studied in [1,8,11] under various
assumptions. We now provide a convergence result which is a deterministic version of the one
in [11, Section IV]. This result requires the following additional assumption:

Assumption 2.

(i) For every n ∈ N
∗, {∇Fn(hn),hn} ⊂ ranDn,

(ii) There exists a positive definite matrix V such that, for every n ∈ N
∗, ∇2Ψ(hn) � B(hn) �

V , where ∇2Ψ denotes the Hessian of Ψ, 1

(iii) At least one of the following statements holds:

(a) rn ≡ r and Rn ≡ R,

(b) h 7→ B(h)h−∇Ψ(h) is a bounded function.

Remark 1. Note that the convexity of Ψ and Assumption 2(ii) implies that Ψ is Lipschitz dif-
ferentiable on R

N , with Lipschitz constant |||V |||. Conversely, if Ψ is β-Lipschitz differentiable
with β ∈]0,+∞[, Assumption 2(ii) is satisfied with V = B(hn) = βIN [27]. However, better
choices for the curvature matrix are often possible [20,22]. In particular, Assumption 2(iii)(b),
required in the online case, is satisfied for a wide class of functions and majorants [1, 11].

Proposition 1. Assume that Assumptions 1 and 2 are fulfilled. Then, the following hold:

(i) (‖∇Fn(hn)‖)n>1 is square-summable.

(ii) (hn)n>1 converges to the unique (global) minimizer ĥ of F .

Proof. See Appendix A.

1
� and ≺ denote the weak and strict Loewner orders, respectively,
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3 Convergence rate analysis

3.1 Convergence rate results

We will first give a technical lemma the proof of which is in the spirit of classical approximation
techniques for the study of first-order optimization methods (see [28, Section 1]):

Lemma 1. Suppose that Assumptions 1 and 2 hold. Let ǫ ∈]0,+∞[ be such that ǫIN ≺ R.
Then, there exists nǫ ∈ N

∗ such that, for every n > nǫ, ∇2Fn(hn) � R− ǫIN and

Fn(hn)− inf Fn 6
1

2
(1 + ǫ)

(
∇Fn(hn)

)⊤(∇2Fn(hn)
)−1∇Fn(hn). (6)

Proof. See Appendix B.

We now state our main result which basically allows us to quantify how fast the proposed
iterative approach is able to decrease asymptotically the cost function:

Proposition 2. Suppose that Assumptions 1 and 2 hold. Let ǫ ∈]0,+∞[ be such that ǫIN ≺ R.
Then, there exists nǫ ∈ N

∗ such that, for every n > nǫ, ∇2Fn(hn) � R− ǫIN and

Fn(hn+1)− inf Fn 6 θn
(
Fn(hn)− inf Fn

)
(7)

where θn = 1− (1 + ǫ)−1θ̃n,

θ̃n =

(
∇Fn(hn)

)⊤
Cn(hn)∇Fn(hn)(

∇Fn(hn)
)⊤(∇2Fn(hn)

)−1∇Fn(hn)
, (8)

Cn(hn) = Dn(D
⊤
nAn(hn)Dn)

†D⊤
n , and (·)† denotes the pseudo-inverse operation. Further-

more, some lower and upper bounds on θn are given by

θn = 1− (1 + ǫ)−1κ−1
n > 0, (9)

θn = 1− (1 + ǫ)−1κ−1
n

(
1−

(σn − σn

σn + σn

)2)
< 1, (10)

where κn > 1 (resp. κn) is the minimum (resp. maximum) eigenvalue of
(
An(hn)

) 1

2

(
∇2Fn(hn)

)−1(
An(hn)

) 1

2 , and σn (resp. σn) is the minimum (resp. maximum)
eigenvalue of ∇2Fn(hn).

Proof. See Appendix C.

3.2 Discussion on the choice of the subspace

Let us make some comments about the above results. First, as enlightened by our proof, at
iteration n > nǫ, the upper value of θn (i.e. the slowest convergence) is obtained in the case of a
gradient-like algorithm. As expected, θn has a larger value when the eigenvalues of the Hessian
of Fn are dispersed. Note that, according to (50),

σn − σn

σn + σn

6
η − η + 2ǫ

η + η
, (11)

where η > 0 is the minimum eigenvalue of R and η is the maximum eigenvalue of R+V . Since
((
An(hn)

) 1

2

(
∇2Fn(hn)

)−1(
An(hn)

) 1

2

)
n>nǫ

is bounded, there exists κmax ∈ [1,+∞[ such that

(∀n > nǫ) κn 6 κmax. All these show that the decay rate is uniformly strictly lower than 1.
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In contrast, when the search subspace is the full space, the lower value of θn (i.e. the fastest
convergence) is obtained. The expression θn in (9) shows that the decay is then faster when the
quadratic majorant constitutes a tight approximation of function Fn at hn. Ideally, if An(hn)
can be chosen equal to ∇2Fn(hn) and Dn is full rank, then θn = O(ǫ). Such a behavior similar
to Newton’s method behavior leads to the best performance one can reasonably expect from
the available data at iteration n.

Finally, when a mid-size subspace is chosen (as in the 3MG algorithm), an intermediate
decay rate is obtained. Provided that Dn captures the main eigendirections in An(hn), a
behavior close to the one previously mentioned can be expected in practice with the potential
advantage of a reduced computational complexity per iteration.

3.3 Batch case

The case when F ≡ Fn is of main interest since it is addressed in most of the existing works.
Then, Proposition 2 and (11) lead to

(∀n > nǫ) F (hn)− inf F 6 µϑn, (12)

where µ =
(
F (hnǫ

)− inf F
)
/ϑnǫ and the worst-case geometrical decay rate ϑ ∈]0, 1[ is given by

ϑ = 1− 1

(1 + ǫ)κmax

(
1−

(η − η + 2ǫ

η + η

)2)
. (13)

Since F is an η-strongly convex function, the following inequality is satisfied [27, Definition
10.5], for every α ∈]0, 1[,

F
(
αhn + (1− α)ĥ

)
+

1

2
α(1− α)η‖hn − ĥ‖2 6 αF (hn) + (1− α)F (ĥ), (14)

or, equivalently,

1

2
α(1− α)η‖hn − ĥ‖2 6 α

(
F (hn)− F (ĥ)

)
+ F (ĥ)− F

(
αhn + (1− α)ĥ

)
. (15)

Thus,
1

2
(1− α)η‖hn − ĥ‖2 6 F (hn)− F (ĥ). (16)

Letting α tend to 0 in the latter inequality implies that

1

2
η‖hn − ĥ‖2 6 F (hn)− F (ĥ) 6 µϑn. (17)

This shows that the MM subspace algorithm converges linearly with rate
√
ϑ.

4 Conclusion

In this paper, we have established expressions of the convergence rate of an online version of
the MM subspace algorithm. These results help in better understanding the good numerical
behaviour of this algorithm in signal/image processing applications and the role played by the
subspace choice. Even in the batch case, the provided linear convergence result appears to be
new. In future work, it could be interesting to investigate extensions of these properties to more
general cost functions than (1).
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A Proof of Proposition 1

A.1 Boundedness of (hn)n>1 (online case)

Assume that Assumption 2(iii)(b) holds. For every n ∈ N
∗, minimizing Θn(·,hn) is equivalent

to minimizing the function

(∀h ∈ R
N ) Θ̃n(h,hn) =

1

2
h⊤An(hn)h− cn(hn)

⊤h, (18)

with

cn(hn) = An(hn)hn −∇Fn(hn)

= rn +B(hn)hn −∇Ψ(hn) (19)

According to Assumption 2(iii)(b), these exists η ∈]0,+∞[ such that

(∀n > 1) ‖cn(hn)‖ 6 η, (20)

In addition, because of Assumption 1(ii), there exists ǫ ∈]0,+∞[ and n0 ∈ N
∗ such that

(∀n > n0) An(hn) � R− ǫIN ≻ ON , (21)

Using now the Cauchy-Schwarz inequality, we have

(∀n > n0)(∀h ∈ R
N )

1

2
h⊤(R− ǫIN )h− ‖h‖η 6 Θ̃n(h,hn). (22)

Since R− ǫIN is a positive definite matrix, the lower bound corresponds to a coercive function
with respect to h. There thus exists ζ ∈]0,+∞[ such that, for every h ∈ R

N ,

‖h‖ > ζ ⇒ (∀n > n0) Θ̃n(h,hn) > 0. (23)

On the other hand, since 0 ∈ ranDn, we have

Θ̃n(hn+1,hn) 6 Θ̃n(0,hn) = 0. (24)

The last two inequalities allow us to conclude that

(∀n > n0) ‖hn+1‖ 6 ζ. (25)

A.2 Convergence of (Fn(hn))n>1

According to Assumption 2(i), the proposed algorithm is actually equivalent to

(∀n ∈ N
∗) hn+1 = hn +Dnũn (26)

ũn = argmin
ũ∈RMn

Θn(hn +Dnũ,hn). (27)

By using (4) and cancelling the derivative of the function ũ 7→ Θn(hn +Dnũ,hn),

D⊤
n∇Fn(hn) +D⊤

nAn(hn)Dnũn = 0. (28)

Hence,

Θ(hn+1,hn) = Fn(hn)−
1

2
ũ⊤
nD

⊤
nAn(hn)Dnũn

= Fn(hn)−
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn). (29)
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In view of (3) and (4), this yields

(∀n ∈ N
∗) Fn(hn+1) +

1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn) 6 Fn(hn). (30)

In addition, the following recursive relation holds

(∀h ∈ R
N ) Fn+1(h) = Fn(h)− (rn+1 − rn)

⊤h+
1

2
h⊤(Rn+1 −Rn)h. (31)

It can thus be deduced that

Fn+1(hn+1) +
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn) 6 Fn(hn) + χn (32)

where

χn = −(rn − rn+1)
⊤hn+1 +

1

2
h⊤
n+1(Rn −Rn+1)hn+1. (33)

We have

|χn| 6 ‖rn − rn+1‖ ‖hn+1‖+
1

2
|||Rn −Rn+1||| ‖hn+1‖2. (34)

If Assumption 2(iii)(b) holds, then, according to (25), (hn)n>1 is bounded, so that Assumption
1(i) guarantees that

+∞∑

n=1

|χn| < +∞. (35)

Otherwise, if Assumption 2(iii)(a) holds, then χn ≡ 0 and (35) is obviously fulfilled. The lower-
boundedness property of Ψ entails that, for every n ∈ N

∗, Fn is lower bounded by inf Ψ > −∞.
Furthermore, (32) leads to

Fn+1(hn+1)− inf Ψ +
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn) 6 Fn(hn)− inf Ψ + |χn|. (36)

Since, for every n ∈ N
∗, Fn(hn)− inf Ψ and (hn+1 −hn)

⊤An(hn)(hn+1 −hn) are nonnegative,(
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)
)
n>1

is a summable sequence, and (Fn(hn))n>1 is convergent.

A.3 Convergence of (∇Fn(hn))n>1

According to (4), we have, for every φ ∈ R and n ∈ N
∗,

Θn

(
hn − φ∇Fn(hn),hn

)
= Fn(hn)− φ‖∇Fn(hn)‖2 +

φ2

2

(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn). (37)

Let
Φn ∈ Argmin

φ∈R

Θn

(
hn − φ∇Fn(hn),hn

)
. (38)

The following optimality condition holds:

(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn) Φn = ‖∇Fn(hn)‖2. (39)

As a consequence of Assumption 2(i), (∀φ ∈ R) hn − φ∇Fn(hn) ∈ ranDn. It then follows from
(5) and (39) that

Θn

(
hn+1,hn

)
6 Θn

(
hn − Φn∇Fn(hn),hn

)
= Fn(hn)−

Φn

2
‖∇Fn(hn)‖2, (40)
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which, by using (29), leads to

Φn‖∇Fn(hn)‖2 6 (hn+1 − hn)
⊤An(hn)(hn+1 − hn). (41)

Let ǫ > 0. Assumption 2(ii) yields, for every n ∈ N
∗,

An(hn) � (|||Rn|||+ |||V |||)IN . (42)

Therefore, according to Assumption 1(ii),

(∃n0 ∈ N
∗)(∀n > n0) ON ≺ An(hn) � α−1

ǫ IN (43)

where
αǫ = (|||R|||+ |||V |||+ ǫ)−1 > 0. (44)

By using now (39), it can be deduced from (43) that, if n > n0 and ∇Fn(hn) 6= 0, then Φn > αǫ.
Then, it follows from (41) that

αǫ

+∞∑

n=n0

‖∇Fn(hn)‖2 6
+∞∑

n=n0

(
hn+1 − hn

)⊤
An(hn)

(
hn+1 − hn

)
. (45)

By invoking the summability property of
(
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)
)
n>1

, we can con-

clude that (‖∇Fn(hn)‖2)n>1 is itself summable.

A.4 Convergence of (hn)n>1

We have shown that
(
(hn+1−hn)

⊤An(hn)(hn+1−hn)
)
n>1

converges to 0. In addition, we have

seen that (21) holds for a given ǫ ∈]0,+∞[ and n0 ∈ N
∗. This implies that, for every n > n0,

|||R− ǫIN ||| ‖hn+1 − hn‖2 6
(
hn+1 − hn

)⊤
An(hn)

(
hn+1 − hn

)
(46)

where |||R − ǫIN ||| > 0. Consequently, (hn+1 − hn)n>1 converges to 0. In addition, (hn)n>1

belongs to a compact set. Thus, invoking Ostrowski’s theorem [29, Theorem 26.1] implies that
the set of cluster points of (hn)n>1 is a nonempty compact connected set. By using (1)-(2), we
have

(∀n ∈ N
∗) ∇Fn(hn)−∇F (hn) = (Rn −R)hn − rn + r. (47)

Since (hn)n>1 is bounded, it follows from that
(
∇Fn(hn)−∇F (hn)

)
n>1

converges to 0. Since
(
∇Fn(hn)

)
n>1

converges to 0, this implies that
(
∇F (hn)

)
n>1

also converges to 0. Let ĥ be a

cluster point of
(
hn

)
n>1

. There exists a subsequence
(
hkn

)
n>1

such that hkn → ĥ. As F is
continuously differentiable, we have

∇F (ĥ) = lim
n→+∞

∇F
(
hkn

)
= 0. (48)

This means that ĥ is a critical point of F . Since F is a strongly convex function, it possesses
a unique critical point ĥ, which is the global minimizer of F [27, Prop.11.7]. Since the unique
cluster point of (hn)n>1 is ĥ, this shows that hn → ĥ.
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B Proof of Lemma 1

Because R is positive definite, according to Assumption 1(ii), there exists n0 ∈ N
∗ such that,

for every n > n0,
ON ≺ R− ǫIN � Rn � R+ ǫIN . (49)

Let n > n0. Then, Fn is a strongly convex continuous function. From standard results, this
function possesses a unique global minimizer ĥn. According to Assumption 2(ii), and (49),
∇2Fn is such that

(∀h ∈ R
N ) ON ≺ R− ǫIN

� Rn +∇(2)Ψ(h) = ∇2Fn(h)

� R+ ǫIN + V . (50)

By using now the second-order Taylor formula with integral remainder, we get

Fn(ĥn) = Fn(hn) +
(
∇Fn(hn)

)⊤(
ĥn − hn

)
+

1

2

(
ĥn − hn

)⊤
H(2)

n (hn)
(
ĥn − hn

)
, (51)

where

∇Fn(hn) = ∇Fn(ĥn) +H(1)
n (hn)(hn − ĥn)

= H(1)
n (hn)(hn − ĥn) (52)

and, for every h ∈ R
N ,

H(1)
n (h) =

∫ 1

0
∇2Fn

(
ĥn + t(h− ĥn)

)
dt

= Rn +

∫ 1

0
∇2Ψ

(
ĥn + t(h− ĥn)

)
dt (53)

H(2)
n (h) = 2

∫ 1

0
(1− t)∇2Fn

(
ĥn + t(h− ĥn)

)
dt

= Rn + 2

∫ 1

0
(1− t)∇2Ψ

(
ĥn + t(h− ĥn)

)
dt. (54)

Because of the lower bound in (50),

(∀h ∈ R
N ) ON ≺ R− ǫIN � H(1)

n (h) (55)

and H
(1)
n (h) is thus invertible. Therefore, combining (51) and (52) yields

Fn(ĥn) = Fn(hn)−
(
∇Fn(hn)

)⊤(
H(1)

n (hn)
)−1∇Fn(hn)

+
1

2

(
∇Fn(hn)

)⊤(
H(1)

n (hn)
)−1

H(2)
n (hn)

(
H(1)

n (hn)
)−1∇Fn(hn). (56)

According to Assumption 2(ii), for every t ∈ [0, 1],

|||∇2Ψ
(
ĥn + t(hn − ĥn)

)
||| 6 |||V |||, (57)

where ||| · ||| denotes the matrix spectral norm. As Proposition 1(ii) guarantees that (hn)n>1

converges to the unique minimizer ĥ of F , it follows from Proposition 1(i), (52), and (55) that
(ĥn)n>1 also converges to ĥ. By using the continuity of ∇2Ψ,

(
∇2Ψ

(
ĥn + t(hn − ĥn)

))
n>1

9



converges to ∇2Ψ(ĥ) and, by invoking the dominated convergence theorem, it can be deduced
that ∫ 1

0
∇2Ψ

(
ĥn + t(hn − ĥn)

)
dt → ∇2Ψ(ĥ). (58)

Since (Rn)n>1 converges to R, this allows us to conclude that
(
H

(1)
n (hn)

)
n>1

converges to

∇2F (ĥ). Proceeding similarly, it can be proved that
(
H

(2)
n (hn)

)
n>1

also converges to ∇2F (ĥ).
This entails that

(
H(1)

n (hn)
)−1 − 1

2

(
H(1)

n (hn)
)−1

H(2)
n (hn)

(
H(1)

n (hn)
)−1 → 1

2

(
∇2F (ĥ)

)−1
. (59)

Besides, since
(
∇2Fn(hn)

)
n>1

=
(
Rn+∇2Ψ(hn)

)
n>1

converges to ∇2F (ĥ), there exists nǫ > n0

such that, for every n > nǫ,

(
H(1)

n (hn)
)−1 − 1

2

(
H(1)

n (hn)
)−1

H(2)
n (hn)

(
H(1)

n (hn)
)−1 − 1

2

(
∇2Fn(hn)

)−1
(60)

� 1

2
ǫ(R+ ǫIN + V )−1

� 1

2
ǫ
(
∇2Fn(hn)

)−1
, (61)

where the last inequality follows from (50). This implies that

(
H(1)

n (hn)
)−1 − 1

2

(
H(1)

n (hn)
)−1

H(2)
n (hn)

(
H(1)

n (hn)
)−1 � 1

2
(1 + ǫ)

(
∇2Fn(hn)

)−1
. (62)

By coming back to (56), we deduce that, for every n > nǫ, (6) holds.

C Proof of Proposition 2

Let n ∈ N
∗. If ∇Fn(hn) is zero, then hn is a global minimizer of Fn and, according to (3)-(5),

F (hn+1) 6 Θn(hn+1,hn)−Θn(hn,hn)+F (hn) 6 F (hn) so that hn+1 is also a global minimizer
of Fn, and (7) is obviously satisfied. So, without loss of generality, it will be assumed in the
rest of the proof that ∇Fn(hn) is nonzero. Because of Assumption 2(ii) and (49), there exists
n0 ∈ N

∗ such that, for every n > n0,

ON ≺ R− ǫIN � Rn � An(hn). (63)

Using (30) and the definition of Cn(hn),

Fn(hn+1) 6 Fn(hn)−
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)

= Fn(hn)−
1

2
(∇Fn(hn))

⊤
Cn(hn)∇Fn(hn). (64)

Combining (63), (64) and (40) yields

‖∇Fn(hn)‖4(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn)

6
(
∇Fn(hn)

)⊤
Cn(hn)∇Fn(hn). (65)

In turn, we have
Θn

(
h̃n,hn

)
6 Θn

(
hn+1,hn

)
, (66)
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where h̃n is a global minimizer of Θn(·,hn

)
. If n > n0, then (63) shows thatAn(hn) is invertible,

and
h̃n = hn −

(
An(hn)

)−1∇Fn(hn) (67)

which, by using (64) and (66), yields

(
∇Fn(hn)

)⊤
Cn(hn)∇Fn(hn) 6

(
∇Fn(hn)

)⊤(
An(hn)

)−1∇Fn(hn). (68)

It can be noticed that the lower bound in (65) is obtained when Dn = ∇Fn(hn), while the
upper bound in (68) is attained when Mn = N and Dn is full rank.

Let us now apply Lemma 1. According to this lemma, there exists nǫ > n0 such that, for
every n > nǫ, (6) holds with ∇2Fn(hn) ≻ ON . Let us assume that n > nǫ. By combining (6)
and (64), we obtain

Fn(hn)− Fn(hn+1) >
θ̃n

1 + ǫ

(
Fn(hn)− inf Fn

)

⇔ Fn(hn+1)− inf Fn 6

(
1− θ̃n

1 + ǫ

)(
Fn(hn)− inf Fn

)
, (69)

which itself is equivalent to (7). The following lower bound is then be deduced from (65):

θ̃n >
‖∇Fn(hn)‖4

βn
(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn)

, (70)

by setting βn =
(
∇Fn(hn)

)⊤(∇2Fn(hn)
)−1∇Fn(hn). Hence, we have

θ̃n >
‖∇Fn(hn)‖4

βnβ′
n

(
∇Fn(hn)

)⊤∇2Fn(hn)∇Fn(hn)

∇Fn(hn)
)⊤

An(hn)∇Fn(hn)
,

>
‖∇Fn(hn)‖4

βnβ′
n

(
sup
g∈RN

g 6=0

g⊤An(hn)g

g⊤∇2Fn(hn)g

)−1

, (71)

where β′
n =

(
∇Fn(hn)

)⊤∇2Fn(hn)∇Fn(hn). The sup term in (71) corresponds to the gen-
eralized Rayleigh quotient of An(hn) and ∇2Fn(hn), which is equal to κn. By invoking now
Kantorovich inequality [28, Section 1.3.2], we get

θ̃n >
4σnσn

κn(σn + σn)2
, (72)

which leads to

1− θ̃n
1 + ǫ

6 θn < 1 (73)

since σn > σn > 0. An upper bound on θ̃n is derived from (68) and (8):

θ̃n 6

(
∇Fn(hn)

)⊤(
An(hn)

)−1∇Fn(hn)(
∇Fn(hn)

)⊤(∇2Fn(hn)
)−1∇Fn(hn)

6 sup
g∈RN

g 6=0

g⊤
(
An(hn)

)−1
g

g⊤
(
∇2Fn(hn)

)−1
g
. (74)
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The sup term in (74) is equal to κ−1
n . Altogether (69), (73), and (74) yield (7)-(10), by setting

θn = 1 − (1 + ǫ)−1θ̃n. In view of Assumption 2(ii) and the equality in (50), the Hessian of Fn

is such that
(∀h ∈ R

N ) ∇2Fn(h) � An(h), (75)

and therefore κn > 1.
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