A phase-field approximation of the Steiner problem in dimension two - Archive ouverte HAL
Article Dans Une Revue Advances in Calculus of Variation Année : 2019

A phase-field approximation of the Steiner problem in dimension two

Résumé

In this paper we consider the branched transportation problem in 2D associated with a cost per unit length of the form $1 + αm$ where $m$ denotes the amount of transported mass and $α > 0$ is a fixed parameter (notice that the limit case $α = 0$ corresponds to the classical Steiner problem). Motivated by the numerical approximation of this problem, we introduce a family of func-tionals $({F ε } ε>0)$ which approximate the above branched transport energy. We justify rigorously the approximation by establishing the equicoercivity and the $Γ$-convergence of ${F ε } as ε ↓ 0$. Our functionals are modeled on the Ambrosio-Tortorelli functional and are easy to optimize in practice. We present numerical evidences of the efficiency of the method.
Fichier principal
Vignette du fichier
Main Document.pdf (931.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01359483 , version 1 (02-09-2016)
hal-01359483 , version 2 (27-06-2017)

Identifiants

Citer

Antonin Chambolle, Luca Alberto Davide Ferrari, Benoît Merlet. A phase-field approximation of the Steiner problem in dimension two. Advances in Calculus of Variation, 2019, 12 (2), pp.157-179. ⟨10.1515/acv-2016-0034⟩. ⟨hal-01359483v2⟩
864 Consultations
406 Téléchargements

Altmetric

Partager

More