A Fitness Cloud Model for Adaptive Metaheuristic Selection Methods
Résumé
Designing portfolio adaptive selection strategies is a promising approach to gain in generality when tackling a given optimization problem. However, we still lack much understanding of what makes a strategy effective, even if different benchmarks have been already designed for these issues. In this paper, we propose a new model based on fitness cloud allowing us to provide theoretical and empirical insights on when an on-line adaptive strategy can be beneficial to the search. In particular, we investigate the relative performance and behavior of two representative and commonly used selection strategies with respect to static (off-line) and purely random approaches, in a simple, yet sound realistic, setting of the proposed model.
Domaines
Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|