
HAL Id: hal-01355249
https://hal.science/hal-01355249v1

Submitted on 10 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fitness Cloud Model for Adaptive Metaheuristic
Selection Methods

Christopher Jankee, Sébastien Verel, Bilel Derbel, Cyril Fonlupt

To cite this version:
Christopher Jankee, Sébastien Verel, Bilel Derbel, Cyril Fonlupt. A Fitness Cloud Model for Adaptive
Metaheuristic Selection Methods. 14th International Conference on Parallel Problem Solving from
Nature (PPSN2016), Sep 2016, Edinburgh, United Kingdom. pp.80-90, �10.1007/978-3-319-45823-
6_8�. �hal-01355249�

https://hal.science/hal-01355249v1
https://hal.archives-ouvertes.fr

A Fitness Cloud Model
for Adaptive Metaheuristic Selection Methods

Christopher Jankee1, Sébastien Verel1 Bilel Derbel2, and Cyril Fonlupt1

1 Univ. Littoral Côte d’Opale, EA 4491 - LISIC, France,
2 Université Lille, CRIStAL – UMR 9189 – INRIA Lille, France

Abstract. Designing portfolio adaptive selection strategies is a promis-
ing approach to gain in generality when tackling a given optimization
problem. However, we still lack much understanding of what makes a
strategy effective, even if different benchmarks have been already de-
signed for these issues. In this paper, we propose a new model based
on fitness cloud allowing us to provide theoretical and empirical insights
on when an on-line adaptive strategy can be beneficial to the search. In
particular, we investigate the relative performance and behavior of two
representative and commonly used selection strategies with respect to
static (off-line) and purely random approaches, in a simple, yet sound
realistic, setting of the proposed model.

1 Introduction

Context and motivation. In the last decades, the optimization community has
gained much expertise in the design of general purpose randomized heuristics to
tackle hard optimization problems. Nonetheless, there cannot exist a universal
solving method; which partially explains the plethora of available algorithms. We
argue that the automatic choice of an effective algorithm, the smart combination
of low level components and the proper tuning of their underlying parameters
is one of the most challenging questions that the optimization community has
to face in the next coming years. This issue is of interest both for its practical
importance and also for the new research opportunities it opens for the design
of novel high level techniques.

Two main approaches can be reported [3]: (i) off-line tuning (static choice
of parameters before optimization) and (ii) on-line tuning (dynamic tuning of
parameters). It is still an open issue to understand what makes these approaches
act differently both at the practical level, and also at a more fundamental level
with respect to the performance of solvers as a function of problem features.
Generally speaking, this research aims at enhancing our understanding of such
an issue by abstracting from a specific problem and instead proposing a high
level model allowing us to provide both theoretical and empirical evidence on
the expected behavior of algorithm configuration methods.

Background on models for adaptive selection strategies. In this article,
we focus on on-line adaptive algorithm selection. From a portfolio of algorithms
at each iteration of the search, a selection strategy aims at choosing the hope-
fully “best” algorithm to execute on the current set of solutions according to the

previously observed performance of available algorithms in the portfolio. In [1,
2], the authors use some specific benchmarks to study novel selection strategies
and improving the underlying reward metrics. For instance, in [1], continuous
benchmarks are experimented using a portfolio of variants of the well-established
differential evolution operator. Alternatively, other works considered to directly
define the rewards associated with the algorithms using particular stochastic dis-
tributions [11, 4]. The purpose is to be able to study some specific properties of
a given adaptive selection strategy such as its ability to detect and to learn the
best algorithm from the portfolio. In [11], the set of possible rewards is defined by
different uniform random distributions that are reassigned randomly to the port-
folio at different time intervals. For instance, in [4], the so-called “Two-Values
benchmarks” is used where two possible reward values and a probability of win-
ing the highest is defined depending on pre-computed time intervals. Recently, a
benchmark was proposed in [6] where the rewards depend on the number of times
that an operator is applied during a time window in order to study a scenario
where a number of operators providing different exploration/exploitation trade-
offs are available. Several properties should be fulfilled by a relevant benchmark
depending on the target issue to be studied. First, one has to take into ac-
count the stochasticity of most heuristic algorithms. Hence, the reward of each
algorithm in the portfolio should typically be defined by choosing a relevant
probability distribution. In order to appreciate the relative quality of the target
selection strategies, the so-called “oracle”, that is the optimal selection strategy,
should be known. At last, since the performance of an algorithm in the portfolio
could evolve during the optimization process, the reward distribution has to be
tightly coupled with the state of the search. This aims at increasing generality
and abstracting away specific algorithmic design issues. For instance, in [11] and
related benchmarks, the reward depends on time, and not directly on the state
of search; in [6] and related benchmarks, the state of the search is defined by
the number of times an operator is used independently of the quality of current
solutions. We argue that despite their skillful design, the existing benchmarks
are not sufficient by their own to allow for a global fundamental understanding
of the design of adaptive methods and the setting of relevant theory for them.

Contribution. In this work, we propose a new model called Fitness Cloud (FC)
model inspired by fitness cloud [12]. The proposed model is to be viewed in a
complementary manner to existing benchmarks. In the FC model, the state of
the search is naturally defined by the fitness of the current solution, and the
performance of a given metaheuristic is function of the current fitness value.
The reward distribution is hence not controlled explicitly; but instead, kept as
an implicit feature implied by the considered adaptive mechanisms or approaches
to be designed independently and studied subsequently.

As a preliminary step we consider in this work a simple usage of the FC
model with a portfolio composed by two metaheuristics having fixed performance
qualities across two configurable fitness ranges. This setting allows however to
study two main issues. First, it allows us to provide theoretical evidence on when
a static (off-line) selection strategy is more beneficial upon an adaptive (on-line)

Algorithm 1 A single-solution single-operator basic metaheuristic.
1: x0 ← initialization()
2: repeat
3: for i = 1 . . . λt do
4: yi ← operator(xt)
5: end for
6: xt+1 ← selection(xt, y1, . . . , yλt)

7: until stopping criterion is true

strategy. Second, through an empirical analysis, and by considering two widely
used on-line adaptive strategies based on multi-armed bandits, we gain a more
deep understanding on when and why such approaches could be effective with
respect to baseline static or purely random strategies [9, 5].

The rest of the paper is organized as follows. In Sec. 2, the fitness cloud model
is defined with a simple theoretical analysis. In Sec. 3, different instantiations of
the proposed scenario are considered and the relative performance and behavior
of different selection strategies are elicited by a throughout empirical study. In
Sec. 4, we conclude the paper and discuss future research directions.

2 Fitness cloud model and theoretical analysis

Before going into more details, and although the proposed model is independent
of a particular metaheuristic, let us consider for the sake of clarity the template
of Algo. 1 rendering the design of a basic single-solution single-operator meta-
heuristic. The considered iterative algorithm has two parts. First, a stochastic
local operator is applied to the current solution xt to produce a set of λt candi-
date solutions yi. Such an operator could be the random bit-flip mutation when
the search space is the set of binary strings. Second, a new current solution xt+1

is selected. This is typically performed according to the fitness values, given by
the fitness function f , of the newly generated solutions yi, and the current solu-
tion xt. A classical example of selection is the (1 + λ)-EA which selects the best
solutions so far. Notice that despite its simplicity such a template encompasses
a wide range of algorithms.

2.1 Model Definition

The Fitness Cloud (FC) model informs about the fitness value of solutions
after one iteration according to the fitness of the current solution. To make it
simple, the FC model supposes that the state of the search is only given by the
fitness ft = f(xt) of the current solution xt (see Algo. 1). Assuming that the
selection rule only takes into account the fitness values (which is a common prac-
tice for a wide range of metaheuristics), no particular model is required for the
selection step. But a specific model is needed to capture the stochastic behavior
of most evolutionary operators when generating new candidate solutions. The
basic idea behind the FC model is to assume that the fitness after applying a
stochastic operator is given by a conditional probability distribution:

Pr(f(y) = z′ | ft = z) (1)

Being said, different choices of this probability distribution can be made such
as discrete distributions (binomial, Poisson, etc.), or continuous distributions
(normal, Weibull, etc.). Given its properties of convergence, we choose the use
a normal distribution in this paper:

Pr(f(y) = z′ | ft = z) ∼ N (µ(z), σ2(z)) (2)

where µ(z) and σ2(z) are respectively the mean and the variance of the normal
distribution which can depend on the fitness z of the solution and which are to
be set to map a target setting. As a consequence, the evolution of the fitness
during one iteration follows a conditional probability distribution which embeds
the previous distribution. One important feature of the probability distribution
is the expected improvement of one metaheuristic iteration, denoted by E+(z),
which is the expected progress of the fitness given the current fitness value is z:

E+(z) =

∫ ∞
z

Pr(ft+1 = z′ | ft = z) z′ dz′ (3)

2.2 Definition of a simple scenario with two fitness ranges

The previous considerations are broad enough to allow us to define a more con-
crete and relevant simple scenario, where we are given a portfolio of two elitist
metaheuristics (see Fig. 1). More precisely, we first assume that the possible fit-
ness values are normalized in the range [0, 1]. The search is assumed to start with
fitness value 0 and stops when the fitness value 1 is reached. The whole range
[0, 1] is then divided into two fitness ranges: the first one from fitness 0 to r 6 1,
and the second range from r to 1. We then consider a portfolio of two heuristic
algorithms having different relative performance in these two ranges. For this
purpose, the relative behavior of each algorithm in the portfolio is modeled ac-
cordingly in each fitness range using the fitness cloud model. More precisely, at
each fitness range, we shall fix the mean and variance of the conditional normal
distribution in Eq. 2 as follows: µi(z) = z + Kµi and σ2

i (z) = Kσi where for
each metaheuristic Mi, i ∈ {1, 2}, parameters Kµi and Kσi are different con-
stant numbers at each fitness range. Therefore, we end up with 9 parameters
to be fixed in this scenario: r, and the 8 parameters for the normal distribu-
tions for each metaheuristic and at each fitness range. However, as it will be
shown in section 2.3, the expected running time to reach the optimal value 1
depends on the expected improvement of each metaheuristic. Hence, only 5 pa-
rameters are free as illustrated by Fig. 1; where E+

i,j denotes the expected fitness
improvement of metaheuristic Mi, i ∈ {1, 2}, for the fitness range j ∈ {1, 2}.
Additionally, we assume that the best metaheuristic for the first fitness range is
M1, whereas it switches to M2 in the second fitness range, i.e., E+

2,1 < E+
1,1, and

E+
1,2 < E+

2,2. Finally, like in many optimization problems, we assume that the

expected improvement decreases when the fitness value increases: E+
1,2 < E+

1,1,

and E+
2,2 < E+

2,1. It is important to notice that the relative performance of al-
gorithms in the portfolio does not depend explicitly neither on time (number

Fitness

P
r(

f(y
) =

 z
' |

 f
t=

 z
)

E+

ft z=

μ(z) z + K= μ

σ(z) =Kσ

M 1

M 2

1

Fitness

E 1,1

E 1,2

E 2,2

E 2,1

0

+
+

+

+

+

r

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

(E

)

Fig. 1. Fitness cloud model: scenario with two metaheuristics and two fitness ranges.

of iterations), nor on the number of times a metaheuristic is applied; but solely
on the state of the search which is assumed to be implied by the current fitness
value.

2.3 Theoretical insights

In this section, we assume an off-line static strategy that selects arbitrary one
metaheuristic, denoted M , in the portfolio and executes it on the previously
described scenario until reaching the target fitness value 1. We shall assume
that the considered metaheuristic follows the template of Algo. 1 initialized
with a solution having fitness value 0 and implementing an elitist selection when
deciding on the next solution, i.e. the best solution is retained for the next
iteration. Notice that the expected improvement of the considered metaheuristic
M at each iteration is by definition constant within each of the two fitness
ranges defined in the considered scenario. We shall denote by E+

1 (resp. E+
2),

the expected improvement within the first (resp. second) fitness range. Let us
consider the running time of metaheuristic M , that is, the first hitting time
(number of iterations) to reach the final fitness value: T = min{t | Ft > 1} where
Ft is the random variable which gives the fitness value of the best solution found
at iteration t. Notice that the total number of evaluations depends on λt and
the number of evaluation in each operators. We then can prove the following:

Theorem 1. The expected running time verifies: Tup − δ
E+

2

6 E[T] 6 Tup with

Tup =
r

E+
1

+
1− r
E+

2

and δ =

{
1− r if 1− r 6 E+

1 ,
E+

1 if E+
1 < 1− r

Proof. Let T1 = min{t | Ft > r} and T2 = min{t − T1 | Ft > 1}. By definition
and by the linearity of expectation, we have that E[T] = E[T1] +E[T2]. Now we
prove the following lemma:

Lemma 1. Let (k, `) ∈ [0, 1]2 such that either r 6 k 6 ` or k 6 ` 6 r. Let
T
′

= min{t | Ft > `} and F0 = k. Let E+ is the expected improvement in the
fitness range [k, `]. Then, E[T

′
] = (`− k)/E+.

The proof of the Lemma is an application of theorem 1 in [8] which can be
stated in short by: if E[Xt −Xt+1|Xt] = δ, then E[T0|X0] = X0/δ. In fact, by
considering the random variable Xt = `−Ft, we have by definition of the fitness
cloud model E[Xt − Xt+1 | Xt] = E+ which gives the necessary additive drift
condition and the proof of the lemma follows immediately.

Since the expected improvement in the first fitness range is E+
1 , applying

the previous lemma with F0 = 0 provides: E[T1] = r/E+
1 . Similarly, let k > r

the fitness of the (best) current solution just after a solution xt with fitness
greater than r is found for the first time. Since the expected improvement in
the second fitness range is E+

2 , applying the previous lemma with F0 = k > r
provides: E[T2] = (1 − k)/E+

2 6 (1 − r)/E+
2 . The stated upper bound is hence

proved. Let’s now define Yt′ = 1 − Ft′ where t
′

= t − T1. Hence, E[T2|Y0] =
Y0/E

+
2 . By applying the law of total expectation, we get E[T2] = E[Y0]/E+

2 .
Let FT1 = FT1−1 + ∆T1−1 where ∆T1−1 is the random variable of the fitness
difference between the iterations T1 − 1 and T1. By definition of T1, FT1−1 < r,
and from the fitness cloud model we have that E[∆t′−1] = E+

1 > 0. It follows

that: E[Y0] > 1− r −E+
1 . When 1− r −E+

1 6 0, the algorithm is able to reach
final fitness without any iteration in the second fitness range. Otherwise, for
1− r−E+

1 > 0, the algorithm spends at least (1− r−E+
1)/E+

2 iterations in the
second fitness range 2. �

For example, with the (1 + 1)-EA which generates a single candidate solution
and keeps it if it is better than the current one, the expected improvement E+(z)

at fitness value z is given by: E+(z) =
∫∞
z

t
σ
√
2π

exp(−(t−µ)
2

2σ2)dt = (µ − z).(1 −

Φ(−(µ−z)σ)) + σ√
2π

exp(−(µ−z)
2

2σ2) where Φ is the cumulative distribution function

of the standard normal distribution. Accordingly, the evolution of the expected
running time for the two possible metaheuristics M1 and M2 as a function of
the length r of the first fitness range, is illustrated in the right side of Fig. 2.

3 Experimental analysis of adaptive selection strategies

3.1 Experimental design

From the scenario defined previously (see Fig. 1) where a portfolio of two meta-
heuristics are given; with the metaheuristic M1 (resp. M2) being better on the
fitness range 1 (resp. 2), we were able to experiment several possible settings of
the underlying FC model. Overall, and considering that M1 and M2 are imple-
mented as an elitist (1 + 1)-EA, we only retain 3 cases corresponding to typical
different instantiations that were found to be the most representative of the dif-
ferent challenges that this scenario allows to consider. In Fig. 2, we summarize
these 3 experimental cases while providing the parameters used in the FC model.
Actually, as shown in the theoretical analysis, the expected improvement (EI for
short) is crucially important in each fitness range. Hence, the mean and the stan-
dard deviation of the normal distributions are chosen to obtain the desired EI.
By choosing Kµ negative, we emulate the behavior of a typical stochastic opera-
tor that decreases on average the fitness of current solution as it is the case very
often in practice. In all the 3 cases, the EIs of M1 and M2 are the same in the
first fitness range, while being different by a factor of 2. This actually does not
penalize much metaheuristics when moving from one range to the other, which
makes Case 2 a reference case with respect to the other cases. In fact, in Case
1, the EI values are much more closer in the second range, i.e. an oracle would

Values are given with a factor of 10−3.

Cases Meta.
Fitness range 1 Fitness range 2

E+
i,1 Kµi Kσi E+

i,2 Kµi Kσi

Case 1
M1 6 −1 16.27 1.8 −2 6.72
M2 3 −1 8.72 2 −2 7.24

Case 2
M1 6 −1 16.27 1 −2 4.59
M2 3 −1 8.72 2 −2 7.25

Case 3
M1 6 −1 16.27 0.2 −2 2.14
M2 3 −1 8.72 0.4 −2 2.84

Static(M1)

Static(M2)

Length of the Fitness Range 1 (r)

A
vg

. N
u

m
b

er
 o

f
e

va
lu

at
io

n

Uniform

Oracle

0 1

-1
E 2,2

-1
E 1,2

-1
E1,1

-1
E2,1

+

+

+

+

Fig. 2. Parameters values of the 3 cases with its corresponding sketch (upper bounds of
expected running time): exp. impr. (E+

i,j), mean difference (Kµi), and std. dev. (Kσi).

act as in Case 2, but the performance of a static selection strategy that would
always choose M1 becomes much closer to the oracle than in Case 2. As for Case
3, the same factor of 2 is kept between the EIs in the second range; but the
EIs has been reduced by a huge factor of 15, hence making the progress in the
second range relatively much more difficult than in the first range compared to
Case 2.

For our experimental investigations, we consider two selection strategies used
in multi-armed bandits framework. Due to the lack of space, we only detail the
experimented parameters without going into a technical discussion; the reader
is referred to [6] for a review and a detailed description of the following adap-
tive selection strategies, namely Upper Confidence Bound (UCB) and Adaptive
Pursuit (AP). The UCB strategy [4] estimates the upper confidence bound of
the expected reward of each arm and selects the one with the higher bound.
A parameter C tunes the exploitation/exploration trade-off. The AP selection
strategy [10] uses exponential recency weighted average to estimate the average,
tuned by an adaption rate α, and selects a metaheuristic according to proba-
bilities updated by a learning rate β. For UCB, the set of studied parameters
C is {0.0008, 0.01, 0.1, 0.75, 2, 4, 10, 20, 25, 50}, and for AP, both adaptation and
learning rate parameters are in the set {0.1, 0.3, 0.5, 0.7, 0.9}. Additionally, we
include three other strategies in our analysis. The oracle strategy selects the
best metaheuristic in each fitness range, i.e. M1 in the first range and M2 in the
second range. The uniform strategy selects at each iteration one metaheuristic
uniformly at random among M1 and M2. Notice that in this case the expected
improvement is the mean of expected improvements of M1 and M2. The static
strategy selects always the same metaheuristic, that is either M1 or M2 before
the execution is started. All results are averaged over 100 independent runs.

3.2 Empirical analysis

In this section, we analyze the relative performance and the behavior of the
considered strategies. The performance measure is the average number of eval-
uations to reach the target fitness value 1. For fairness, we consider the best
parameter setting for each strategy. For each case, we compute the average rank
of a setting over all values of r, and the best ranked setting is selected. The
performance comparison is based on the Mann-Whitney test with a confidence

0.0 0.2 0.4 0.6 0.8 1.0

Length the Fitness Range 1 (r)
150

200

250

300

350

400

450

500

550

A
v
g
.
n
u

m
b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
static(M1)
static(M2)
Uniform
UCB
AP

0.0 0.2 0.4 0.6 0.8 1.0
Length of the Fitness Range 1 (r)

100

200

300

400

500

600

700

800

900

1000

A
v
g
.
n
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
Static(M1)
Static(M2)
Uniform
UCB
AP

0.0 0.2 0.4 0.6 0.8 1.0

Length of the Fitness Range 1 (r)
0

1000

2000

3000

4000

5000

A
v
g
.
n
u

m
b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
Static(M1)
Static(M2)
Uniform
UCB
AP

Fig. 3. Comparison of selection methods with the best parameters settings for UCB
C = 4, and for AP α = 0.1, β = 0.1. From left to right: test cases 1, 2, and 3.

level of 0.05. In Fig. 3, we show the performance obtained in the three test
cases as a function of the length r of the first fitness range. Notice that for the
considered Cases 1, 2, and 3, the average difference over the r-values of the per-
formance between the oracle and the best static strategy (either with M1 or M2)
is respectively 20, 57, and 100 evaluations. This is the maximum performance
gap between an optimal adaptive method and an optimal off-line static strategy
tuned for each value of r.

Adaptive strategies vs. uniform. As suggested by Th. 1, the expected perfor-
mance of static, oracle, and uniform selection strategies decreases linearly with
the length of the first fitness range. The performance of UCB and AP strategies
are also linear from our empirical data (Pearson correlation coefficients are very
close to −1). For all test cases, and for any length r of the first range, UCB
and AP strategies perform significantly better than the uniform random selec-
tion strategy (except for few values of r where no significant difference with AP
is found). Interestingly, the average gap between UCB and uniform strategy in
test cases 1, 2, and 3 is respectively around 26, 87, and 263 evaluations, which is
much higher than the difference between the oracle and the best static strategy.

Adaptive strategies vs. static. The performance of adaptive strategies can be
worse than a static strategy. For example, in the test case 2, UCB is better than
any static strategy for r ∈ [0.11, 0.99]. Otherwise, when the length of the fitness
range where the expected improvement of M1 is the best, is short (r < 0.11), the
static strategy choosing M2 is better than UCB. At the opposite, for r > 0.99,
the static strategy choosing M1 is better than UCB. The performance of the
adaptive selection strategies also depends on the expected improvements in the
second range. Respectively for the cases 1 and 3, the r-values intervals where
UCB strategy outperforms static strategies are [0.09, 0.81] and [0.61, 1.00]. On
average over the r-values, in test case 1 and 2, UCB outperforms the static
strategy by 10 and 49 evaluations respectively. However, in the test case 3, when
the expected improvements of algorithms in the portfolio in the second range
are very small compared to the first one, a static strategy is preferred, indeed
UCB requires 71 additional evaluations on average than static.

UCB vs. AP strategies. Overall, the AP strategy never outperforms UCB
strategy significantly except in 3 minor exceptions for the lowest values of r

0.0 0.2 0.4 0.6 0.8 1.0

Fitness

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
e
q
u
e
n
cy

α = 0.1
α = 0.3
α = 0.5
α = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

Fitness
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
e
q
u
e
n
cy

c=8·10−7

c=2·10−3

c=4·10−3

c=20·10−3

Fig. 4. Frequency of the best metaheuristic selection according to the fitness value for
different parameter settings. Case 2 with r = 0.5 AP (left) with β = 0.1 UCB (right).

in the case 3. In the case 1, UCB is better than AP for r > 0.35, and the
difference between UCB and AP is 10 evaluations in average, which is half of the
difference between best static strategy and oracle. In test case 2, UCB strategy
is better than AP except for the 3 largest values of r, while being very close to
the oracle, i.e. the average difference for UCB is only 8 evaluations compared
to the 32 evaluations for AP, and 57 evaluations for a static strategy. In case
3, the performance difference between of UCB and AP is much closer (only 15
evaluations on average). Although UCB outperforms AP for r-values larger than
0.37, both strategies are on average worst than the optimal static strategy by a
factor of 1.8. The Fig. 4 shows the selection frequency of the best metaheuristic
according to the current fitness value for UCB and AP in Case 2 and when the
expected improvement of metaheuristics is changed at fitness value r = 0.5. The
UCB strategy converges at fitness 0.3 for C = 0.004, and AP around fitness 0.5
for α = 0.1. In addition, when the best metaheuristic changes at fitness value
0.5, the UCB strategy recovers more quickly the best metaheuristic than AP.

Uniform vs. static. It is shown several times that random selection of param-
eters could outperformed a tuning method with static value of parameters [9,
5]. The model with two fitness ranges scenario helps us to understand why and
when random selection can be advantageous. The uniform strategy is better than
the best static strategy when the length r belongs to the intervals [0.14, 0.4],
[0.56, 0.88], and [0.6, 1] respectively for cases 1, 2, and 3. Roughly speaking, a
random uniform selection, and moreover an adaptive strategy, is more efficient
when the performances of each metaheuristic in the portfolio are close.

Discussion. This two-fitness-range scenario allows us to fine-tune the perfor-
mance of each metaheuristic at the two stages of the search. The comparison of
case 2 and 3 shows that when the average expected improvements at the second
stage is much lower than in the first stage, an adaptive method becomes less
efficient except when the length of the first stage is very large. Indeed, the time
that can be gained in the first stage becomes negligible and the main difficulty
then turns out to be the final convergence to the optimum value. When the
scale of the average expected improvements between the two stages is moderate
like in test case 2, an adaptive method like UCB strategy is very effective. How-
ever, when the performance difference between metaheuristics at one stage of the

search becomes small, like in test case 1, the problem is equally difficult for all
metaheuristics in the portfolio, and the adaptive selection becomes rather use-
less besides the fact that it becomes more difficult to detect the best performing
metaheuristic at a given iteration.

4 Conclusion

It is our hope that the fitness cloud model opens new research paths allowing
to understand, to test and to design new adaptive portfolio methods in different
settings. In this work, using a simple scenario, we provide properties of when
and why an (on-line) adaptive selection strategy, or random selection could out-
perform an (off-line) static strategy. Indeed, the fitness cloud model goes beyond
the intuition and allows to give a formal framework in order to analyze selection
strategies in portfolio and to understand their behavior in different settings.

Following the natural question of Baudǐs et al. in his conclusion [1] on ”the
influence of portfolio size and composition on performance of various strategies”,
it would be possible to design relevant scenarios to deeply study those questions.
It would also be possible to conduct a fine grained analysis of other selection
strategies in a sequential as well as in parallel context [7]. It will also be inter-
esting to extend the fitness cloud model to multi-objective optimization where
the design of adaptive portfolio method is relatively in its infancy beginning.

References

1. P. Baudǐs and P. Poš́ık. Online black-box algorithm portfolios for continuous
optimization. In PPSN XIII, pages 40–49. Springer, 2014.

2. L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection
with dynamic multi-armed bandits. In GECCO’08, page 913, 2008.

3. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control
in evolutionary algorithms. In Param. Setting in EA, pages 19–46. Springer, 2007.

4. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. AMAI, 60:25–64, 2010.

5. M. Garćıa-Valdez, L. Trujillo, J. J. Merelo-Guérvos, and F. Fernández-de Vega.
Randomized parameter settings for heterogeneous workers in a pool-based evolu-
tionary algorithm. In PPSN XIII, pages 702–710, 2014.

6. A. Goëffon, F. Lardeux, and F. Saubion. Simulating non stationary operators in
search algorithms. Applied Soft Computing, 38:257 – 268, 2016.

7. C. Jankee, S. Verel, B. Derbel, and C. Fonlupt. Distributed Adaptive Metaheuristic
Selection: Comparisons of Selection Strategies. In EA 2015, pages 83–96, 2015.

8. P. K. Lehre and C. Witt. General drift analysis with tail bounds. Technical Report
1307.2559, arXiv, 2013.

9. R. Tanabe and A. Fukunaga. Evaluation of a randomized parameter setting strat-
egy for island-model evolutionary algorithms. In CEC’13, pages 1263–1270, 2013.

10. D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In
GECCO’05, pages 1539–1546, 2005.

11. D. Thierens. Adaptive strategies for operator allocation. In Param. Setting in EA,
volume 54, pages 77–90. Springer, 2007.

12. S. Verel, P. Collard, and M. Clergue. Where are Bottlenecks in NK Fitness Land-
scapes? In CEC’03, pages 273–280, 2003.

