Identification of Dynamic Models in Complex Networks With Prediction Error Methods: Predictor Input Selection - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Automatic Control Année : 2016

Identification of Dynamic Models in Complex Networks With Prediction Error Methods: Predictor Input Selection

Résumé

This paper addresses the problem of obtaining an estimate of a particular module of interest that is embedded in a dynamic network with known interconnection structure. In this paper it is shown that there is considerable freedom as to which variables can be included as inputs to the predictor, while still obtaining consistent estimates of the particular module of interest. This freedom is encoded into sufficient conditions on the set of predictor inputs that allow for consistent identification of the module. The conditions can be used to design a sensor placement scheme, or to determine whether it is possible to obtain consistent estimates while refraining from measuring particular variables in the network. As identification methods the Direct and Two Stage Prediction-Error methods are considered. Algorithms are presented for checking the conditions using tools from graph theory.
Fichier principal
Vignette du fichier
DANKERS_VANDENHOF_BOMBOIS_HEUBERGER_2016.pdf (522.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01355016 , version 1 (25-04-2019)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Arne Dankers, Paul M. J. van den Hof, Xavier Bombois, Peter S. C. Heuberger. Identification of Dynamic Models in Complex Networks With Prediction Error Methods: Predictor Input Selection. IEEE Transactions on Automatic Control, 2016, 61 (4), pp.937-952. ⟨10.1109/TAC.2015.2450895⟩. ⟨hal-01355016⟩
90 Consultations
146 Téléchargements

Altmetric

Partager

More