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Identification of Dynamic Models in Complex Networks with
Prediction Error Methods - Predictor Input Selection

Arne Dankers, Member, IEEE, Paul M. J. Van den Hof, Fellow, IEEE, Xavier Bombois and Peter S. C.
Heuberger

Abstract—This paper addresses the problem of obtaining an
estimate of a particular module of interest that is embedded
in a dynamic network with known interconnection structure. In
this paper it is shown that there is considerable freedom as to
which variables can be included as inputs to the predictor, while
still obtaining consistent estimates of the particular module of
interest. This freedom is encoded into sufficient conditions on
the set of predictor inputs that allow for consistent identification
of the module. The conditions can be used to design a sensor
placement scheme, or to determine whether it is possible to
obtain consistent estimates while refraining from measuring
particular variables in the network. As identification methods the
Direct and Two Stage Prediction-Error methods are considered.
Algorithms are presented for checking the conditions using tools
from graph theory.

Index Terms—System identification, closed-loop identification,
graph theory, dynamic networks, linear systems.

I. INTRODUCTION

SYSTEMS IN ENGINEERING are becoming more com-
plex and interconnected. Consider for instance, power

systems, telecommunication systems, and distributed control
systems. Since many of these systems form part of the
foundation of our modern society, their seamless operation is
paramount. However, the increasing complexity and size of the
systems poses real engineering challenges (in maintaining sta-
bility of the electrical power grid, increasing data throughput
of telecommunication networks, etc.). These systems cannot be
operated, designed, and maintained without the help of models.

Tools from system identification are well suited to construct
models using measurements obtained from a system. However,
the field of system identification is primarily focused on iden-
tifying open and closed-loop systems. Recently, there has been
a move to consider more complex interconnection structures.
The literature on identification and dynamic networks can be
split into two categories based on whether the interconnection
structure of the network is assumed to be known or not. In the
latter the objective is generally to detect the topology of the
network, whereas in the former the focus has mainly been to
identify (part of) the dynamical transfers in the network based
on open-loop and closed-loop identification techniques.
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The topology detection literature is primarily based on the
methods of Granger and Granger Causality [1]. In [2], [3] it
is shown that it is possible to distinguish between open and
closed-loop systems (using a parametric approach). Recently,
this line of reasoning has been extended to more general
networks in [4], [5] (using a non-parametric approach). Several
methods have appeared that automate Granger’s method for
detection of causal relations by using regularization terms to
set certain links in the network to zero. For instance, [6], [7]
directly implement an `0 norm, whereas [8] uses the LASSO
([9]), and [10] uses a compressed sensing approach. In [11]
a Bayesian approach for topology detection is presented. The
main features that these algorithms have in common is that
all internal variables in the network are assumed to be known,
each internal variable is driven by an independent stochastic
variable, and most papers assume all transfer functions in the
network are strictly proper. Under these conditions it is shown
that topology detection is possible.

Although the structure detection problem is very interesting,
the underlying identification techniques, even for the case
that the network structure is known, have not been fully
developed yet. In particular if we consider situations that
go beyond the rather restrictive conditions mentioned above.
As a result, identification of (particular modules in) dynamic
networks for a given interconnection structure is a relevant
problem to address. Moreover, for a large number of systems
in engineering the interconnection structure of the network is
known (power systems, telecommunication systems etc.).

In the identification of dynamic networks attention has been
given to the study of spatially distributed systems, where each
node is connected only to its direct neighbors and the modules
are assumed to be identical [12], [13] or not [14], [15], [16].
In these papers emphasis is on numerically fast algorithms.

In [17] closed-loop prediction-error identification methods
have been extended to the situation of dynamic networks
and analyzed in terms of consistency properties. The inter-
connection topology is very general and goes beyond the
spatially distributed topology. The approach is to focus on
identifying a single module embedded in a network with
known interconnection structure and with general conditions
on noise disturbances. Both noise and known user-defined
signals (called reference signals) can drive or excite the
network, while the presence of reference signals can be used
to relax assumptions on the noise in the system. In the analysis
of [17] it is required that all signals that directly map into the
output of the considered module are taken as predictor inputs,
and therefore they all need to be measured.

In this paper we consider an extension of the problem
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setting in [17]. The objective is to identify a particular module
embedded in a dynamic network, and to analyze the flexibility
that exists in which selection of measured variables leads
to consistent identification of the module of interest. The
variables that are measured are available to use as predictor
inputs, i.e. variables that are used to predict the value of a
particular internal variable. Specifically, the question addressed
in this paper is: given a dynamic network with known inter-
connection structure, for which selection of predictor inputs
can we guarantee that a particular module of interest can be
estimated consistently?

Our approach is actually a local approach where only a
limited number of variables need to be measured in order to
identify the object of interest. The resulting algorithms can
be applied to small to medium scale networks, or to large
networks with sparse interconnection structures. It can also be
used to design a sensor placement scheme tailored specifically
to identifying a particular module in the network. Thus, it may
be possible to avoid measuring variables that are expensive,
difficult or unsafe to measure.

In order to make the step towards a selection of predictor
input variables, the dynamics that appear between a selection
of measured variables in a network is described in a so-called
immersed network. The conditions for consistent module es-
timates are derived in a general context, and then specified
for the Direct and Two-Stage Prediction-Error Methods, as
formalized for a dynamic network case in [17]. This paper is
based on the preliminary results of [18], [19] but developed
and formulated here in a stronger and unifying framework, by
relying predominantly on an analysis that is independent of
the particular identification algorithm.

In Section II dynamic networks are defined. In Section
III the prediction-error identification framework is presented,
including generalizations of the Direct and Two-Stage identifi-
cation methods. In Section IV an immersed network is defined
as the network that is constructed by discarding nonmeasured
node variables. Additionally general conditions are formulated
on the predictor input variables to ensure consistent estimation
of the module dynamics. In Sections V and VI the conditions
on predictor inputs are specified for each identification method
separately. In Section VII an algorithm based on graph theory
is presented to check the conditions.

II. SYSTEM DEFINITION AND SETUP

A. Dynamic Networks

The networks that are considered in this paper are built up
of L elements (or nodes), related to L scalar internal variables
wj , j = 1, . . . , L. It is assumed that each internal variable is
such that it can be written as:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)

where G0
jk(q), k ∈ Nj is a proper rational transfer function,

q−1 is the delay operator (i.e. q−1u(t) = u(t− 1)) and,
• Nj is the set of indices of internal variables with direct

causal connections to wj , i.e. i ∈ Nj iff G0
ji 6= 0;

• vj is an unmeasured disturbance variable that is a sta-
tionary stochastic process with rational spectral density:
vj = H0

j (q)ej where ej is a white noise process, and H0
j

is a monic, stable, minimum phase transfer function;
• rj is an external variable that is known and can be

manipulated by the user; it is an important variable that
can provide deliberate (user-chosen) excitation to the
network.

It may be that the disturbance and/or external variable are not
present at some nodes. The entire network is defined by:
w1

w2

...
wL

=


0 G0

12 · · · G0
1L

G0
21 0

. . .
...

...
. . . . . . G0

L−1 L

G0
L1 · · · G0

L L−1 0



w1

w2

...
wL

+


r1

r2

...
rL

+


v1

v2

...
vL

,
where G0

jk is non-zero if and only if k ∈ Nj for row j. Using
an obvious notation results in:

w = G0w + r + v (2)

where, w, r, and v are vectors. If an external or disturbance
variable is absent at node i, the ith entry of r or v respectively
is 0. Eq. (2) is the data generating system.

There exists a path from wi to wj if there exist integers
n1, . . . , nk such that G0

jn1
G0
n1n2
· · ·G0

nki
is non-zero. Likewise

there exists a path from ri to wj (or vi to wj) if there exist
integers n1, . . . , nk such that G0

jn1
G0
n1n2
· · ·G0

nki
is non-zero.

The following sets will be used throughout the paper:
• R and V denote the sets of indices of all external and

disturbance variables respectively present in the network.
• Rj and Vj denote the sets of indices of all the external

and disturbance variables respectively with a path to wj .
A directed graph of a dynamic network can be used to

represent a network. A directed graph is a collection of nodes
connected by directed edges. A directed graph of a dynamic
network can be constructed as follows:
1. Let all wk, k ∈ {1, . . . , L} be nodes.
2. Let all vk, k ∈ V and rm, m ∈ R be nodes.
3. For all i, j ∈ {1, . . . , L} if Gji 6= 0, then add a directed

edge from node wi to node wj .
4. For all k∈V add a directed edge from vk to wk.
5. For all k∈R add a directed edge from rk to wk.

More concepts from graph theory will be used throughout
the paper, but they will be presented where they are applicable.
The following is an example of a dynamic network.

Example 1: Consider a network defined by:
w1

w2

w3

w4

w5

w6

=


0 0 0 G0

14 0 0
G0

21 0 G0
23 0 0 0

0 G0
32 0 0 0 0

0 0 0 0 0 G0
46

0 G0
52 0 G0

54 0 G0
56

0 0 G0
63 0 G0

65 0




w1

w2

w3

w4

w5

w6

+


v1

v2

v3

v4

v5

v6


shown in Fig. 1a. Its graph is shown in Fig. 1b. �
All networks are assumed to satisfy the following conditions.

Assumption 1:
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Fig. 1. A diagram (a) and graph (b) of the network for Examples 1 and 2. In
(a), each rectangle represents a transfer function, and each circle represents
a summation. For clarity labels of the wi’s have been placed inside the
summations indicating that the output of the sum is the variable wi.

(a) The network is well-posed in the sense that all principal
minors of limz→∞(I −G0(z)) are non-zero.

(b) (I −G0)−1 is stable.
(c) All rm, m ∈ R are uncorrelated to all vk, k ∈ V .1

The well-posedness property [20] ensures that both G0 and
(I − G0)−1 only contain proper (causal) transfer functions,
and still allows the occurrence of algebraic loops.

In this paper the set of internal variables chosen as predictor
inputs plays an important role. For this reason, it is convenient
to partition (2) accordingly. Let Dj denote the set of indices
of the internal variables that are chosen as predictor inputs.
Let Zj denote the set of indices not in {j} ∪ Dj , i.e.
Zj = {1, . . . , L} \ {{j} ∪ Dj}. Let wD denote the vector
[wk1 · · · wkn ]T , where {k1, . . . , kn} = Dj . Let rD denote
the vector [rk1 · · · rkn ]T , where {k1, . . . , kn} = Dj , and
where the `th entry is zero if r` is not present in the network
(i.e. ` /∈ R). The vectors wZ , vD, vZ and rZ are defined
analogously. The ordering of the elements of wD, vD, and rD
is not important, as long as it is the same for all vectors. The
transfer function matrix between wD and wj is denoted G0

jD.
The other transfer function matrices are defined analogously.
By this notation, the network equations (2) are rewritten as:wjwD

wZ

 =

 0 G0
jD G0

jZ

G0
Dj G0

DD G0
DZ

G0
Zj G0

ZD G0
ZZ

wjwD
wZ

+

vjvD
vZ

+

rjrD
rZ

 , (3)

where G0
DD and G0

ZZ have zeros on the diagonal.

III. PREDICTION ERROR IDENTIFICATION AND
EXTENSION TO DYNAMIC NETWORKS

In this section, the prediction-error framework is presented
with a focus on using the techniques in a network setting.
It is an identification framework based on the one-step-ahead
predictor model [21].

1Throughout this paper r uncorrelated to v will mean that the cross-
correlation function Rrv(τ) is zero for all τ .

A. Prediction Error Identification

Let wj denote the variable which is to be predicted, i.e. it is
the output of the module of interest. The predictor inputs are
those (known) variables that will be used to predict wj . The
sets Dj and Pj are used to denote the sets of indices of the
internal and external variables respectively that are chosen as
predictor inputs - wk is a predictor input iff k ∈ Dj , and rk
is a predictor input iff k ∈ Pj . The one-step-ahead predictor
for wj is then [21]:

ŵj(t|t− 1, θ)=H−1
j (q, θ)

(∑
k∈Dj

Gjk(q, θ)wk(t)

+
∑
k∈Pj

Fjk(q, θ)rk(t)
)

+
(
1−H−1

j (q, θ)
)
wj(t) (4)

where Hj(q, θ) is a monic noise model, Gjk(θ) models the
dynamics between wk to wj , k ∈ Dj , and Fjk(q, θ) models
the dynamics between rk to wj , k ∈ Pj . The importance of
including Fjk(q, θ) will become evident later in the paper. The
prediction error is then:

εj(t, θ) = wj(t)− ŵj(t|t− 1, θ)

= Hj(θ)
−1
(
wj −

∑
k∈Dj

Gjk(θ)wk −
∑
k∈Pj

Fjk(θ)rk

)
(5)

where arguments q and t have been dropped for notational
clarity. The parameterized transfer functions Gjk(θ), k ∈ Dj ,
Fjk(θ), k ∈ Pj , and Hj(θ) are estimated by minimizing the
sum of squared (prediction) errors:

Vj(θ) =
1

N

N−1∑
t=0

ε2
j (t, θ). (6)

where N is the length of the data set. Let θ̂N denote the
minimizer of (6). Under standard (weak) assumptions ([21])
θ̂N → θ∗ with probability 1 as N →∞ where

θ∗ = arg min
θ∈Θ

Ē[ε2
j (·, θ)] and Ē := lim

N→∞

1

N

N−1∑
t=0

E,

and E is the expected value operator [21]. The function
Ē[ε2

j (t, θ)] is denoted V̄j(θ). If Gjk(q, θ∗) = G0
jk the module

transfer is estimated consistently.
As in closed-loop identification, identification in networks

may have the problem that the disturbance affecting the “out-
put” wj is correlated to one or more of the predictor inputs. In
the closed-loop identification literature several methods have
been developed to deal with this problem such as the Direct
and Two Stage Methods [22], [23], [24]. Both methods have
been extended to a network setting [17]. Generalizations of
both methods to allow for a flexible choice of predictor inputs
are presented in the following subsections.

B. The Direct Method

The Direct Method for identifying G0
ji(q) is defined by the

following algorithm.
Algorithm 1: Direct Method.

1. Select wj as the output variable to be predicted.
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2. Choose the internal and external variables to include as
predictor inputs (choose Dj and Pj).

3. Construct the predictor (4).
4. Obtain estimates Gjk(q, θ̂N ), k ∈ Dj , Fjk(q, θ̂N ), k ∈ Pj

and Hj(q, θ̂N ) by minimizing the sum of squared predic-
tion errors (6).

In [17] Step 2 of the algorithm is replaced by a fixed choice,
namely, Dj = Nj , and Pj = ∅.

C. Two Stage Method

In the Two Stage Method, the predictor inputs are not
internal variables, but projections of internal variables. The
projection of wk onto an external variable rk is defined as
follows. Any variable wk can be written as:

wk =
∑
m∈Rk

F 0
kmrm +

∑
m∈Vk

H0
kmvm. (7)

where F 0
km and H0

km are proper stable transfer functions. Let
w

(rm)
k := F 0

kmrm. The term w
(rm)
k is the projection of wk onto

causally time shifted versions of rm (referred to as simply the
projection of wk onto rm). If there are more external variables
available, then wk can be projected onto a set of external
variables rm, m ∈ Tj , which is denoted by

w
(T j)
k :=

∑
m∈Tj

w
(rm)
k =

∑
m∈Tj

F 0
kmrm. (8)

An estimate of w(T j)
k can be obtained by estimating F 0

km,
m ∈ Tj (using a Prediction-Error Method for instance) using
a parametrized model Fkm(q, γ) with γ a parameter vector,
resulting in an estimated model Fkm(q, γ̂N ). This model is
used to generate the simulated signal:

ŵ
(T j)
k (γ̂N ) =

∑
m∈Tj

Fkm(q, γ̂N )rm(t).

The Two Stage Method is defined as follows.
Algorithm 2: Two Stage Method.

1. Select wj as the output variable to be predicted.
2. Choose the external variables to project onto (choose Tj).
3. Choose the internal and external variables to include as

predictor inputs (choose Dj and Pj).
4. Obtain estimates ŵ(T j)

k of w(T j)
k for each k ∈ Dj .

5. Construct the predictor

ŵj(t|t− 1, θ) =
∑
k∈Dj

Gjk(θ)ŵ
(T j)
k +

∑
k∈Pj

Fjk(θ)rk. (9)

6. Obtain estimates Gjk(q, θ̂N ), k ∈ Dj and Fjk(q, θ̂N ), k ∈
Pj by minimizing the sum of squared prediction errors (6).

This algorithm is a generalization of the one in [17].
Remark 1: In Step 5 of the algorithm a noise model is

optional. For simplicity it is not included in (9).

IV. CONSISTENT IDENTIFICATION ON THE BASIS OF A
SUBSET OF PREDICTOR INPUT VARIABLES

When only a subset of all node variables in a network is
available from measurements, a relevant question becomes:
what are the dynamical relationships between the nodes in this
subset of measured variables? In Section IV-A it is shown that
when only a selected subset of internal variables is considered,
the dynamic relationships between these variables can be
described by an immersed network. Several properties of the
immersed network are investigated. In Section IV-B it is shown
under which conditions the dynamics that appear between two
internal variables remain invariant when reducing the original
network to the immersed one. In Section IV-C the results of
identification in networks are characterized. It is shown that it
is the dynamics of the modules in the immersed network that
are being identified, and conditions for consistency of general
identification results are formulated. The results presented in
this section are independent of an identification method.

A. The Immersed Network

In this subsection, we show that there exists a unique
dynamic network consisting only of a given subset of internal
variables, that still exactly describes the dynamics between the
selected variables. Moreover, we show that this network can
be constructed by applying an algorithm from graph theory for
constructing an immersed graph. Given the selected variables
wk, k ∈ {j} ∪ Dj , the remaining variables wn, n ∈ Zj are
sequentially removed from the network.

The following proposition shows that there is a unique char-
acterization of the dynamics between the selected variables.

Proposition 1: Consider a dynamic network as defined in
Section II-A that satisfies Assumption 1. Consider the set of
internal variables {wk}, k ∈ Dj∪{j}. There exists a network:[
wj(t)
wD(t)

]
=Ğ0(q,Dj)

[
wj(t)
wD(t)

]
+F̆ 0(q,Dj)

rj(t)+vj(t)
rD(t)+vD(t)
rZ(t)+vZ(t)

, (10)

where Ğ0 and F̆ 0 are unique transfer matrices of the form
(using a notation analogous to that of (3)):

Ğ0 =

[
0 Ğ0

jD

Ğ0
Dj Ğ

0
DD

]
and F̆ 0 =

[
F̆ 0
jj 0 F̆ 0

jZ

0 F̆ 0
DD F̆

0
DZ

]
, (11)

where Ğ0
DD has zeros on the diagonal, F̆ 0

DD is diagonal, and if
there is an index ` such that both v` and r` are not present,
then the corresponding column of F̆ 0 is set to all zeros. �
See Appendix X-A for the proof. Proposition 1 is in line
with the result of [25] where conditions have been formulated
for the existence of a unique interconnection matrix Ğ0 on
the basis of a transfer function from external inputs to node
signals. The conditions in [25] typically reflect that enough
entries of Ğ0 and F̆ 0 are known (or set to zero as in our
case). Proposition 1 is formulated for a particular structure,
that matches with our dynamic network setup. Enforcing Ğ0

to have zeros on the diagonal results in a network that does
not have any “self-loops”, i.e. no paths that enter and leave the
same node. This matches the assumptions imposed on the data
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Fig. 2. Example of constructing an immersion graph. In Step 1 internal
variable w3 is removed, and in step 2 variable w6. Edges between w’s
have been emphasized in thick black lines since these connections define
the interconnection structure of the corresponding dynamic network.

generating system (2). Enforcing the leading square matrix
of F̆ 0 to be diagonal results in a network where each rk,
k ∈ Dj ∪ {j} only has a path to the corresponding internal
variable wk (matching the interconnection structure of (2)).
The effect of the remaining external variables is encoded in
F 0
jZ and F 0

DZ without any pre-defined zero entries.
Denote the noise in (10) as:[

v̆j
v̆D

]
=

[
F̆ 0
jj 0

0 F̆ 0
DD

] [
vj
vD

]
+

[
F̆ 0
jZ

F̆ 0
DZ

]
vZ . (12)

Then by the Spectral Factorization Theorem [26], there exists
a unique, monic, stable, minimum phase spectral factor H̆0:[

v̆j
v̆D

]
=

[
H̆0
jj H̆0

jD

H̆0
Dj H̆0

DD

] [
ĕj
ĕD

]
. (13)

where [ĕj ĕ
T
D ]T is a white noise process.

In the following text it is shown that a network of the form
(10) can be constructed using ideas from graph theory.

In graph theory, one way to remove nodes from a graph is by
constructing an immersed graph. A graph G′ is an immersion
of G if G′ can be constructed from G by lifting pairs of
adjacent edges and then deleting isolated nodes [27]. Lifting
an edge is defined as follows. Given three adjacent nodes a,
b, c, connected by edges ab and bc, the lifting of path abc is
defined as removing edges ab and bc and replacing them with
the edge ac. In Fig. 2 an immersed graph of the network of
Example 1 is constructed by first removing the node w3 and
connecting v3 to w2 and w6, and subsequently removing w6

and connecting v6 to w5 and w4.
In this way an immersed network can be constructed by

an algorithm that manipulates the dynamics of the network
iteratively. To keep track of the changes in the transfer
functions iteratively, let G(i)

mn and F
(i)
mn denote the transfer

functions of the direct connections wn to wm and from rn
and vn to wm, respectively, at iteration i of the algorithm.

Algorithm 3: Constructing an immersed network.
1. Initialize. Start with the original network:

• G
(0)
mn = G0

mn for all m,n ∈ {1, . . . , L}, and
• F

(0)
kk = 1, for all k ∈ R ∪ V , F (0)

mn = 0 otherwise.

2. Remove each wk, k ∈ Zj from the network, one at a time.
Let d = card(Zj). Let Zj = {k1, . . . , kd}.
for i = 1 : d

(a) Let Iki denote the set of internal variables with edges
to wki . Let Oki denote the set of nodes with edges
from wki . Lift all paths wn → wki → wm, n ∈ Iki ,
m ∈ Oki . The transfer function of each new edge from
wn → wm is G(i)

mn = G
(i−1)
mki

G
(i−1)
kin

.

(b) Let Irki denote the set of external or disturbance vari-
ables with edges to wki . Lift all paths rn → wki →
wm, n ∈ Irki , m ∈ Oki . The transfer function for each
new edge from rn → wm is F (i)

nm = F
(i−1)
nki

G
(i−1)
kin

.

(c) If there are multiple edges between two nodes, merge
the edges into one edge. The transfer function of
the merged edge is equal to the sum of the transfer
functions of the edges that are merged.

(d) remove the node wki from the network.

end
3. Remove all self-loops from the network. If node wm has

a self loop, then divide all the edges entering wm by (1−
G

(d)
mm(q)) (i.e. one minus the loop transfer function). �

Let Ği
0

and F̆ i
0

denote the final transfer matrices of the
immersed network.

Remark 2: Algorithm 3 has a close connection to Mason’s
Rules [28], [29]. However, Mason was mainly concerned
with the calculation of the transfer function from the sources
(external and noise variables) to a sink (internal variable). This
is equivalent to obtaining the immersed network with Dj = ∅,
i.e. all internal variables except one are removed. Importantly,
Algorithm 3 is an iterative algorithm which allows for easy
implementation (even for large networks), whereas Mason’s
rules are not iterative and complicated even for small networks.

w1

G0
21

w2

G0
23 G0

32

w3G0
63

w6

G0
56G0

65

w5

G0
54

w4

G0
46

G0
14

G0
52

v1

v2

v3

v4

v5

v6

w1

Ğ0
21

w2Ğ0
52

w5

Ğ0
54 Ğ0

45

w4 Ğ0
14

Ğ0
42

v̆1

v̆2

v̆4

v̆5

(a) (b)
Fig. 3. (a) Original dynamic network considered in Example 2. (b) Immersed
network with w3 and w6 removed.

Example 2: Consider the dynamic network shown in Figure
3a. The graph of this network is shown in the first graph of Fig.
2. Suppose w3 and w6 are to be removed from the network (i.e.
Zj = {3, 6}). By Algorithm 3 the network shown in Figure 3b
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results. The transfer functions of the immersed network are:

Ği
0

(q,Dj)=


0 0 G0

14 0
G0

21

1−G0
23G

0
32

0 0 0

0 G0
32G

0
46G

0
63 0 G0

46G
0
65

0
G0

52+G0
56G

0
63G

0
32

1−G0
56G

0
65

G0
54

1−G0
56G

0
65

0



F̆ i
0

(q,Dj)=


1 0 0 0 0 0

0 1
1−G0

23G
0
32

0 0
G0

23

1−G0
23G

0
32

0

0 0 1 0 G0
46G

0
63 G0

46

0 0 0 1
1−G0

56G
0
65

G0
56G

0
63

1−G0
56G

0
65

G0
56

1−G0
56G

0
65

.
Note that the immersed network (shown in Figure 3b) is
represented by the last graph shown in Figure 2. �

Interestingly, the matrix F̆ i
0

in Example 2 has the same
structure as that of F̆ 0 in Proposition 1. This alludes to a
connection between the network characterized in (10) and
immersed networks as defined by Algorithm 3.

Proposition 2: The matrices Ğ0 and F̆ 0 of the network
characterized by (10) and the matrices Ği

0

and F̆ i
0

defined
by Algorithm 3 are the same. �

The proof is in Appendix X-B. Since, by Proposition 2
the matrices in (10) are the same as those of the immersed
network, the superscript i will be dropped from this point
on in the matrices defined by Algorithm 3. An important
consequence of Proposition 2 is that (by Proposition 1) the
immersed network is unique.

Instead of calculating the matrices of the immersed network
iteratively, it is also possible to derive analytic expressions for
the matrices Ğ0 and F̆ 0.

Proposition 3: Consider a dynamic network as defined in
(2) that satisfies Assumption 1. For a given set {j} ∪ Dj the
transfer function matrices Ğ0 and F̆ 0 of the immersed network
are:2[

0 Ğ0
jD

Ğ0
Dj Ğ0

DD

]
=

[
1−G̃jj

I−diag(G̃0
DD)

]−1[
0 G̃0

jD

G̃0
Dj G̃

0
DD−diag(G̃0

DD)

]
[
F̆ 0
jj 0 F̆ 0

jZ

0 F̆ 0
DD F̆ 0

DZ

]
=

[
1−G̃jj

I−diag(G̃0
DD)

]−1[
1 0 F̃ 0

jZ

0 I F̃ 0
DZ

]
where[
G̃jj G̃jD
G̃Dj G̃DD

]
=

[
0 G0

jD

G0
Dj G0

DD

]
+

[
G0
jZ

G0
DZ

]
(I−G0

ZZ)−1
[
G0
Zj G0

ZD

]
,[

F̃jZ
F̃DZ

]
=

[
G0
jZ

G0
DZ

]
(I −G0

ZZ)−1. �

The proof is in Appendix X-C. The transfer functions G̃mn
correspond to G(d)

mn in Step 3 of Algorithm 3.
The immersed network inherits some useful properties from

the original network.
Lemma 1: Consider a dynamic network as defined in (2)

that satisfies Assumption 1 and a given set {j} ∪ Dj .
1. Consider the paths from wn to wm, n,m ∈ Dj that pass

only through nodes w`, ` ∈ Zj in the original network. If

2The arguments q or Dj (or both) of Ğ0
jk(q,Dj) and F̆ 0

jk(q,Dj) are
sometimes dropped for notational clarity.

w1

G0
21 G0

12

w2

G0
31

w3

G0
23

G0
41

w4

G0
54

w5 G0
25

G0
15

v1 r1

v2

v3v4

v5

r5

Fig. 4. Network analyzed in Examples 3 and 7.

all these paths and G0
mn(q) have a delay (are zero), then

Ğ0
mn(q,Dj) has a delay (is zero).

2. Consider the paths from rn to wm (or vn to wm), n ∈ Zj ,
m ∈ Dj . If all these paths pass through at least one node
w`, ` ∈ Dj then F̆ 0

mn(q,Dj) = 0.
For a proof see Appendix X-D.

B. Conditions to Ensure Ğ0
ji(q,Dj) = G0

ji(q)

A central theme in the previous section was that the transfer
function Ğ0

ji(Dj) in the immersed network may not be the
same as the transfer function G0

ji in the original network.
In other words, by selecting a subset of internal variables
to be taken into account, the dynamics between two internal
variables might change. In this section conditions are presented
under which the module of interest, G0

ji, remains unchanged
in the immersed network, i.e. Ğ0

ji(q,Dj) = G0
ji(q).

The following two examples illustrate two different phe-
nomena related to the interconnection structure that can cause
the dynamics Ğ0

ji(q,Dj) to be different from G0
ji(q).

Example 3: Consider the dynamic network
w1

w2

w3

w4

w5

=


0 G0

12 0 0 G0
15

G0
21 0 G0

23 0 G0
25

G0
31 0 0 0 0

G0
41 0 0 0 0
0 0 0 G0

54 0



w1

w2

w3

w4

w5

+


v1 + r1

v2

v3

v4

v5 + r5

 .
shown in Fig. 4. The objective of this example, is to choose D2

such that in the immersed network Ğ0
21(D2) = G0

21 (denoted
in green). A key feature of the interconnection structure in
this example is that there are multiple paths from w1 to w2:
w1 → w2, w1 → w3 → w2, w1 → w4 → w5 → w2, etc..

Start by choosing D2 = {1}, then by Proposition 3,

Ğ0
21(q,{1})=G0

21(q)+G0
23(q)G0

31(q)+G0
25(q)G0

54(q)G0
41(q).

Two of the terms comprising this transfer function correspond
to the two paths from w1 to w2 that pass only through wk, k ∈
Z2 (Z2 = {3, 4, 5}). From Algorithm 3 this is not surprising
since the paths G0

23G
0
31 and G0

25G
0
54G

0
41 must be lifted to

remove the nodes w3, w4 and w5 from the original network.
Clearly, for this choice of D2, Ğ0

21(D2) 6= G0
21.

Now choose D2 = {1, 5}. By Proposition 3

Ğ0
21(q, {1, 5}) = G0

21(q) +G0
23(q)G0

31(q).

Again, one of the terms comprising Ğ0
21(q, {1, 5}) corresponds

to the (only) path from w1 to w2 that passes only through wk,
k ∈ Z2 (Z2 = {3, 4}).
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Finally, choose D2 = {1, 3, 5}. By Proposition 3
Ğ0

21(q, {1, 3, 5}) = G0
21(q) as desired. Note that for this choice

of D2 every path except G0
21 from w2 to w1 is ”blocked” by

a node in D2. �
In general, one internal variable wk from every indepen-

dent path wi to wj must be included in Dj to ensure that
Ğ0
ji(q,Dj) = G0

ji(q). This is proved later in Proposition 4.
However, before presenting the proposition, there is a sec-

ond phenomenon related to the interconnection structure of the
network that can cause the dynamics Ğ0

ji(q,Dj) to be different
from G0

ji(q), as illustrated in the next example.

w1

G0
21

G0
12

w2

G0
32

G0
23

w3

v1

r1

v2

v3

Fig. 5. Network that is analyzed in Example 4.

Example 4: Consider the network shown in Fig. 5. The
objective of this example, is to choose D2 such that in the
immersed network Ğ0

21(D2) = G0
21 (denoted in green).

Note that in this network there is only one independent path
from w1 to w2. Choose D2 = {1}. By Proposition 3

Ğ0
21(q, {1}) =

G0
21(q)

1−G0
23(q)G0

32(q)

which is not equal to G0
21(q) as desired. The reason the factor

1
1−G0

23G
0
32

appears is because when lifting the path G23G32 a
self-loop from w2 to w2 results. Thus, in step 3 of Algorithm 3
the transfer functions of the edges coming into w2 are divided
by the loop transfer function.

For the choice D2 = {1,3}, Ğ0
21({1,3}) = G0

21 as desired.
Note that in for this choice of D2, all paths from w2 to w2

are ”blocked” by a node in D2. �
In general, if Dj is chosen such that no self-loops from wj

to wj result due to the lifting of the paths when constructing
the immersed network, the denominator in Step 3 of Algorithm
3 is reduced to 1. From these two examples we see that:

• Every parallel path from wi to wj should run through an
input in the predictor model, and

• Every loop on the output wj should run through an input
in the predictor model.

This is formalized in the following proposition.
Proposition 4: Consider a dynamic network as defined in

Section II-A that satisfies Assumption 1. The transfer function
Ğ0
ji(q,Dj) in the immersed network is equal to G0

ji(q) if Dj
satisfies the following conditions:

(a) i ∈ Dj , j /∈ Dj ,
(b) every path wi to wj , excluding the path G0

ji, goes through
a node wk, k ∈ Dj ,

(c) every loop wj to wj goes through a node wk, k ∈ Dj . �
The proof is in Appendix X-E. The formulated conditions are
used to make appropriate selections for the node variables that
are to be measured and to be used as predictor inputs. In the
following section it is shown that it is possible to identify the
dynamics of the immersed network.

C. Estimated Dynamics in Predictor Model

In this section it is shown that the estimated dynamics
between the predictor inputs and the module output wj , are
equal to Ğ0

jk(Dj). The result confirms that the estimated
dynamics are a consequence of the interconnection structure
and the chosen predictor inputs. In addition conditions are
presented that ensure that the estimates of Ğ0

jk(Dj) are
consistent. The results in this section are not specific to a
particular identification method.

To concisely present the result, it is convenient to have a
notation for a predictor which is a generalization of both the
Direct and Two Stage Methods. Consider the predictor

ŵj(t|t−1, θ)=H−1
j (q,θ)

( ∑
k∈Dj

Gjk(q,θ)w
(X )
k (t)

+
∑
k∈Pj

Fjk(q,θ)rk(t)
)

+
(
1−H−1

j (q,θ)
)
wj(t) (14)

where X denotes a (sub)set of the variables rk, vk, k ∈
{1, . . . , L}. Note that both predictors (4) and (9) are special
cases of the predictor (14). For the Direct Method, choose
X = {rk1 , . . . , rkn , v`1 , . . . , v`n}, where {k1, . . . , kn} = R,
and {`1, . . . , `n} = V . Then w

(X)
k = wk. For the Two Stage

Method, choose X = {rk1 , . . . , rkn}, where {k1, . . . , kn} =
Tj .

A key concept in the analysis of this section is the optimal
output error residual, which will be discussed next. From (10),
wj can be expressed in terms of wk, k ∈ Dj as

wj=
∑
k∈Dj

Ğ0
jkwk+

∑
k∈Zj∩Rj

F̆ 0
jkrk+

∑
k∈Zj∩Vj

F̆ 0
jkvk + vj + rj . (15)

Note that by Lemma 1 some F̆ 0
jk(q,Dj) may be zero depend-

ing on the interconnection structure. Let wk be expressed in
terms of a component dependent on the variables in X , and
a component dependent on the remaining variables, denoted
wk = w

(X )
k +w

(⊥X )
k . In addition, split the sum involving the

rk-dependent terms according to whether rk is in Pj or not.
Then, from (15):

wj=
∑
k∈Dj

Ğ0
jkw

(X )
k +

∑
k∈Dj

Ğ0
jkw

(⊥X )
k +

∑
k∈Pj

F̆ 0
jkrk

+
∑

k∈((Zj∪{j})∩Rj)\Pj

F̆ 0
jkrk +

∑
k∈Zj∩Vj

F̆ 0
jkvk + vj . (16)

When choosing an Output Error predictor (i.e. Hj(q, θ) = 1),
with predictor inputs w(X )

k , k ∈ Dj and rk, k ∈ Pj , the part
of (16) that is not modeled can be lumped together into one
term. This term is the optimal output error residual of wj , and
is denoted pj :

pj(Dj) :=
∑
k∈Dj

Ğ0
jkw

(⊥X )
k +

∑
k∈((Zj∪{j})∩Rj)\Pj

F̆ 0
jkrk + v̆j , (17)

where v̆j is given by
∑
k∈Zj∩Vj F̆

0
jkvk+vj in accordance with

(12). Consequently, wj equals:

wj =
∑
k∈Dj

Ğ0
jkw

(X )
k +

∑
k∈Pj

F̆ 0
jkrk + pj . (18)
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In a system identification setting, the optimal output error
residual of wj acts as the effective “noise” affecting wj (this
is clear from (18)). It also corresponds to the unmodeled
component of wj .

The following theorem is the main result of this section. It
characterizes conditions that correlation between the optimal
output error residual of wj and the predictor inputs must
satisfy so that it is possible to obtain consistent estimates
of the dynamics between the predictor inputs. Such condi-
tions are common in the identification literature. In open-
loop identification for instance it is well known that if the
innovation is uncorrelated to the input consistent estimates
are possible [21]. Similarly, it is known ([21]) that for the
Direct Method in closed-loop, if the output noise is whitened
and the whitened noise is uncorrelated to the plant input
then consistent estimates of the plant are possible. The result
that follows is an analogue to that reasoning adapted to
identification in networks.

Theorem 1: Consider a dynamic network as defined in
Section II-A that satisfies Assumption 1. Consider model
structures with independently parameterized noise and mod-
ule models. For given sets Dj , Pj , and X construct
the predictor (14). Suppose the power spectral density of
[wj w

(X)
k1

. . . w
(X)
kn

r`1 . . . r`m ]T where {k1, . . . , kn} =
Dj , {`1, . . . , `m} = Pj is positive definite for a sufficiently
large number of frequencies ωk ∈ (−π, π]. Consider the
conditions:
(a) Ē[H−1

j (q,η)pj(t,Dj)·∆Gjk(q, θ,Dj)w(X)
k (t)]=0, ∀k∈Dj ,

(b) Ē[H−1
j (q,η)pj(t,Dj)·∆Fjk(q, θ,Dj)rk(t)] = 0, ∀k∈Pj ,

where ∆Gjk(θ,Dj) = Ğ0
jk(Dj)−Gjk(θ), and ∆Fjk(θ,Dj) =

F̆ 0
jk(Dj)−Fjk(θ).

Then Gjk(q, θ∗) = Ğ0
jk(q,Dj), where Ğ0

jk(q,Dj) is defined
in Proposition 3, if for all θ ∈ Θ:
1. Conditions (a) and (b) hold for all η, or
2. The equations of Conditions (a) and (b) hold for η∗

only, where η∗ = arg min Ē[
(
H−1
j (q, η)pj(t,Dj)

)2
], and

H−1
j (q, η∗)pj(t,Dj) is white noise. �

The proof can be found in Appendix X-F. The theorem can
be interpreted as follows. In Case 1, consistent estimates are
possible if the predictor inputs are uncorrelated to the optimal
output error residual of wj . This is analogous to the open
loop situation. In Case 2, consistent estimates are possible if
the whitened version of the optimal output error residual of
wj is uncorrelated to the predictor inputs. This is analogous
to the closed-loop Direct Method reasoning.

The condition on the power spectral density of
[wj w

(X)
k1

. . . w
(X)
kn

r`1 . . . r`m ]T is a condition on
the informativity of the data [30] (i.e. the data must be
persistently exciting of sufficiently high order).

The main point of Theorem 1 is twofold:
1. The estimated transfer functions Gjk(q, θ∗) are conse-

quences of the choice of Dj . In particular, they are esti-
mates of the transfer functions Ğ0

jk(q,Dj) specified by the
immersed network.

2. To present general conditions under which consistent esti-
mates (of Ğ0

jk(q,Dj)are possible.

Theorem 1 points to a notion of identifiability. For a given
set Dj , a particular module G0

ji is identifiable if Ğ0
ji = G0

ji.
Thus, if the conditions of Proposition 4 are satisfied for a given
set Dj , then G0

ji is identifiable.
In the next two sections it is shown how Theorem 1 applies

to both the Direct and Two Stage Methods respectively.

V. PREDICTOR INPUT SELECTION - DIRECT METHOD

In this section it is shown how to satisfy the conditions of
Theorem 1 using the Direct Method.

When using the Direct Method for identification in dynamic
networks, there are three main mechanisms that ensure con-
sistent estimates of G0

ji [19], [17] (the same mechanisms are
present in the closed-loop Direct Method [21], [24], [23]):
1. the noise vj affecting the output wj is uncorrelated to all

other noise terms vn, n ∈ Vj ,
2. every loop that passes through wj in the data generating

system contains at least one delay, and
3. there exists a θ such that H−1

j (θ)vj = ĕj is white noise.
In Proposition 2 of [17] it is shown that for the choice
Dj = Nj and Pj = ∅, these conditions plus a condition on
the informativity of the data are sufficient in order to obtain
consistent estimates of a module G0

ji embedded in the network.
In the setup considered in this paper an additional mechanism
plays a role, namely the choice of predictor inputs.

The following proposition presents conditions on the im-
mersed network that ensure that Case 2 of Theorem 1 holds.
The conditions reflect the three mechanisms presented above.

Proposition 5: Consider a dynamic network as defined in (2)
that satisfies Assumption 1. Consider the immersed network
constructed by removing wn, n ∈ Zj from the original
network. The situation of Case 2 of Theorem 1 holds for the
immersed network if:
(a) v̆j is uncorrelated to all v̆k, k ∈ Dj .
(b) There is a delay in every loop wj to wj (in the immersed

network).
(c) If Ğ0

jk has a delay, then Gjk(θ) is parameterized with a
delay.

(d) pj is not a function of any rn, n ∈ R.
(e) There exists a η such that H−1

j (q, η)pj(t) is white noise.
The proof can be found in Appendix X-G.

In the following subsections, the conditions of Proposition
5 are interpreted in terms of what they mean in the original
network. In Subsection V-A it is shown what conditions can
be imposed in the original network in order to ensure that v̆j
is uncorrelated to v̆k, k ∈ Dj (i.e Condition (a) of Proposition
5 holds).In Subsection V-B it is shown under which conditions
pj is not a function of external variables (i.e. Condition
(d) of Proposition 5 holds). In Subsection V-C a version of
Proposition 5 is presented where all the conditions are stated
only in terms of the original network.

A. Correlation of Noise

In this section conditions are presented that ensure that v̆j
is uncorrelated to v̆k, k ∈ Dj . The conditions are presented
using only variables in the original network.
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Recall from (12) that v̆k is a filtered sum of vn, n∈Zj∪{k},

v̆k(t) =
∑
n∈Zj

F̆ 0
jn(q,Dj)vn + F̆ 0

jj(q,Dj)vj(t). (19)

Consider 2 variables v̆k1 and v̆k2 . Suppose that there is a path
from another variable vn, n ∈ Zj to both wk1 and wk2 . By
Lemma 1 both F̆ 0

k1n
and F̆ 0

k2n
are non-zero in this situation.

Consequently, as can be see from (19) both v̆k1 and v̆k2 are
functions of vn, with the result that v̆k1 and v̆k2 are correlated.
Thus, due to the presence of vn and the interconnection struc-
ture of the network, v̆k1 and v̆k2 are correlated. In this case vn
is a confounding variable. In statistics, and in particular in
statistical inference, a confounding variable is a variable that is
not known (or measured) and causally affects both the output
variable and the input variable [31]. The induced correlation
between input and output is however not caused by a direct
causal relation between the input and output. In the framework
of this paper consider the following definition.

Definition 1: Consider a particular output variable wj and a
set Dj of predictor inputs. In this modeling setup, a variable
v` is a confounding variable if the following conditions hold:
(a) There is a path from v` to wj that passes only through

wm, m ∈ Zj .
(b) There is a path from v` to one or more wk, k ∈ Dj that

passes only through wm, m ∈ Zj . �

The following is an example of a confounding variable.

w1

G0
21 G0

12

w2

G0
13

w3

G0
23

v1

v2

v3

Fig. 6. Network that is analyzed in Example 5.

Example 5: Consider the network shown in Fig. 6. Suppose
that the objective is to obtain a consistent estimate of G0

21

(denoted in green) using the Direct Method. Let j = 2, and
choose D2 = {1}. By Definition 1, v3 is a confounding
variable. The expressions for v̆1 and v̆2 for this network are:

v̆1 = v1 +G0
13v3 and v̆2 = v2 +G0

23v3.

Clearly, the confounding variable v3 induces a correlation
between v̆1 and v̆2. �

The presence of confounding variables is not the only way
that v̆k1 and v̆k2 could become correlated. Suppose that v̆k1 is
a function of vn, and v̆k2 is a function of vm. If vn and vm
are correlated, then v̆k1 and v̆k2 are correlated.

The following proposition presents conditions that ensure
v̆j is uncorrelated to all v̆k, k ∈ Dj .

Proposition 6: Consider a dynamic network as defined in (2)
that satisfies Assumption 1. Consider the immersed network
constructed from the internal variables, {wk}, k ∈ Dj . The
disturbance term v̆j (as defined in (12)) is uncorrelated to all
v̆k, k ∈ Dj if the following conditions hold:
(a) vj is uncorrelated to all vk, k ∈ Dj and to all variables

vn, n ∈ Zj that have paths to any wk, k ∈ Dj that pass
only through nodes w`, ` ∈ Zj .

(b) All vk, k ∈ Dj are uncorrelated to all vn, n ∈ Zj that
have a path to wj that passes only through nodes in Zj .

(c) All vn, n ∈ Zj are uncorrelated to each other
(d) No variable vk, k ∈ Zj is a confounding variable.
The proof can be found in Appendix X-H.

Remark 3: Suppose that all vk, k ∈ V are uncorrelated.
Then Conditions (a) - (c) hold for any Dj . However, whether
Condition (d) holds depends on the interconnection structure
and the choice of Dj . �

B. Adding External Excitation

External variables are not strictly necessary to ensure that
the data is informative when using the direct method as long
as the noise that is driving the system is sufficiently exciting.
However, external excitation can be beneficial in order to
reduce the variance of the estimates, or provide extra excitation
in a frequency range of interest.

Whenever there is an external variable rk acting as a
“disturbance” on the output variable wj (i.e. pj contains an
element which is due to the external variable rk), it makes
sense to model that component. This happens whenever there
is a path rk to wj that passes only through wk, k ∈ Zj .
Thus, in this case, choose the set Pj = {k} so that rk
is included as a predictor input (i.e. the dynamics from rk
to wj are modeled). The advantage of this scheme is that
the power of the optimal output error residual is reduced by
eliminating known variables from pj , i.e. the signal to noise
ratio is increased. Consequently, pj is only a function of v’s
(Condition (d) of Proposition 5 holds).

C. Main Result - Direct Method

Conditions are presented so that the Direct Method will
result in consistent estimates of Ğ0

ji(Dj). In Proposition 5 the
conditions were stated in terms of the immersed network. In
the following proposition the conditions are stated in terms of
the original network.

Proposition 7: Consider a dynamic network as defined in
(2) that satisfies Assumption 1. Let {wk}, k ∈ Dj and {rk},
k ∈ Pj be the set of internal and external variables respectively
that are included as inputs to the predictor (4). The set Pj is
constructed to satisfy the condition that k ∈ Pj if and only
if there exists a path from rk to wj , that passes only through
nodes in Zj . Consistent estimates of Ğ0

ji are obtained using
the Direct Method formulated in Algorithm 1 if the following
conditions are satisfied:
(a) There is a delay in every loop wj to wj .
(b) v satisfies the conditions of Proposition 6.
(c) The power spectral density of

[wj wk1 · · · wknr`1 · · · r`m ]T , k∗ ∈ Dj , `∗ ∈ Pj
is positive definite for a sufficiently large number of
frequencies ωk ∈ (−π, π].

(d) The parameterization is chosen flexible enough, i.e.
there exist parameters θ and η such that Gjk(q, θ) =
Ğ0
jk(q,Dj), ∀k ∈ Dj , Fjk(q, θ) = F̆ 0

jk(q,Dj), ∀k ∈ Pj ,
and Hj(q, η) = H̆0

j (q,Dj).
(e) If Ğ0

jk has a delay, then Gjk(θ) is parameterized with a
delay. �
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Proof: The proof follows almost directly from Theorem 1
and Propositions 5 and 6. It remains to be shown that pj = v̆j
(i.e. Condition (d) of Proposition 5 holds).

By Lemma 1 F̆ 0
jk, k ∈ Dj is zero unless there is a path

from rk to wj which passes only through wn, n ∈ Zj . From
(17) and by the way Pj is constructed it follows that there are
no r terms present in pj . Consequently, pj = v̆j .

Remark 4: In Proposition 7 conditions have been pre-
sented which, if satisfied, ensure that consistent estimates of
Ğ0
jk(q,Dj), k ∈ Dj as defined by the immersed network are

obtained. If the set Dj is chosen such that Ğ0
ji(q,Dj) =

G0
ji(q) (i.e. the Dj is chosen such that the conditions of

Proposition 4 are satisfied) then Proposition 7 shows under
which conditions G0

ji can be consistently identified. �
The reason that Condition (a) and exact noise modeling are

required is due to the presence of a (feedback) path from wj to
at least one wk, k ∈ Dj . If there is no such feedback, then the
conditions of Proposition 7 simplify considerably. Similarly,
since, it is the variable vj that is causing the problems when
there is such a feedback path, if it is not present, the conditions
can be simplified.

Corollary 1: Consider the situation of Proposition 7. If there
is no path from wj to any wk, k ∈ Dj , or if vj is not present
in the network, then Conditions (a) and (e) can be omitted,
and Condition (d) can be changed to:
(d’) The parameterization is chosen flexible enough, i.e. there

exists a parameter θ such that Gjk(q, θ) = Ğ0
jk(q,Dj),

∀k ∈ Dj , Fjk(q, θ) = F̆ 0
jk(q,Dj), ∀k ∈ Pj . �

w1

G0
21G0

12

w2

G0
32G0

23

w3 G0
37

w7

G0
28

w8

G0
87 G0

78

G0
41

w4

G0
54G0

64

w5w6

G0
36 G0

35

v1

r1

v2

v3

v4

v5v6

v7

v8

Fig. 7. Network that is analyzed in Examples 6 and 8.

Example 6: Consider the dynamic network shown in Fig. 7.
Suppose the objective is to obtain consistent estimates of G0

32

(denoted in green) using the Direct Method.
First, we show how to choose the set D3 such that

Ğ0
32(q,Dj) in the immersed network is equal to G0

32(q) (i.e.
Dj is chosen such that it satisfies the conditions of Proposition
4). Besides G0

32 there are several paths from w2 to w3:

w2 → w1 → w4 → w5 → w3,

w2 → w1 → w4 → w6 → w3

for instance. All paths from w2 to w3 (not including G0
32)

pass through either the nodes w1 and w2, the nodes w4 and
w2. Thus, Condition (b) of Proposition 4 is satisfied for D3 =
{1, 2} and D3 = {2, 4}.

Since all loops from w3 pass through w2, Condition (c) of
Proposition 4 is also satisfied for both these choices of D3.

For both of these choices, v7 and v8 are confounding
variables (Condition (b) of Proposition 7 is not satisfied).
However, if w7 is included as a predictor input, then there
are no more confounding variables.

By this reasoning two possible choices for D3 that lead to
consistent estimates of G0

32 are {2, 4, 7} (denoted in blue) and
{2, 1, 7}. In either case, P3 should be chosen as ∅.

Another possible choice for D3 = {2, 5, 6, 7} = N3. It is
interesting that the previous sets D3 are strictly smaller than
N3, and are not even subsets of N3. �

The choice Dj = Nj , Pj = ∅ always satisfies the
Conditions of Proposition 4 and confounding variables are
never present. This is the choice that is made in [17].

In the following section an analogue to Proposition 7 is
presented for the Two-Stage Method.

VI. PREDICTOR INPUT SELECTION - TWO STAGE METHOD

A guiding principle to ensure consistent estimates that has
been presented in Theorem 1 is that the optimal output error
residual of wj should be uncorrelated to the predictor inputs.
For the Two Stage Method this condition is enforced by
projecting the predictor inputs onto the external variables.
Consequently, the predictor inputs are only functions of rm,
m ∈ Tj . As long as the unmodeled component of wj is not
a function of rm, m ∈ Tj then Conditions (a) and (b) of
Theorem 1 are satisfied.

Proposition 8: Consider a dynamic network as defined in
(2) that satisfies Assumption 1. Let {rm}, m ∈ Tj be the
external input(s) onto which will be projected. Let {w(Tj)

k },
k ∈ Dj and {rk}, k ∈ Pj be the sets of (projections of)
internal and external variables respectively that are included
as inputs to the predictor (9). The set Pj is constructed to
satisfy the condition that k ∈ Pj if and only if there exists a
path from rk to wj , k ∈ Tj , that passes only through nodes in
Zj . Consistent estimates of G0

ji are obtained using the Two
Stage Method (Algorithm 2) if the following conditions hold:
(a) Every rk, k ∈ Tj is uncorrelated to all rm, m /∈ Tj , except

those rm for which there is no path to wj .
(b) The power spectral density of [w

(T j)
k1
· · ·w(T j)

kn
rm1
· · · rmn

]T,
k∗ ∈ Dj , m∗ ∈ Pj , is positive definite for a sufficient
number of frequencies ωk ∈ (−π, π]

(c) The parameterization is chosen flexible enough, i.e. there
exists a parameter θ such that Gjk(q, θ) = Ğ0

jk(q,Dj),
∀k ∈ Dj , Fjk(q, θ) = F̆ 0

jk(q,Dj), ∀k ∈ Pj . �

For a proof, see Appendix X-I.
Note that in order for Condition (b) to hold, there must be a
path from at least one rm, m ∈ Tj to wi. If not, then w(T j)

i = 0
and the power spectral density of Condition (b) will not be
positive definite.

Remark 5: The condition on the order of excitation of the
data (Condition (b)) can be satisfied if there is one external
variable present for each predictor input. This is however just a
sufficient condition. For more information on how the network
dynamics add excitation to the data so that fewer external
variables are required see [32] for instance. �

Remark 6: In the discussion thus far, we have not allowed
the choice of wj as a predictor input (by Condition (a) in
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Proposition 4, j is not allowed to be in Dj). It can be shown
that wj can be used as a predictor input to consistently
identify G0

ji using the Two-Stage method if rj is present
(and Conditions (a) - (c) of Proposition 8 are satisfied).
Moreover, it can also be shown that if rj is not present,
then it is not possible to choose wj as a predictor input
to consistently identify G0

ji using the Two-Stage Method (as
proved in [33]). The advantage of choosing wj as a predictor
input is that Condition (c) of Proposition 4 is automatically
satisfied without including any other variables. �

Remark 7: The Conditions presented in Proposition 8 do
not change if there is measurement noise present on the
measurements of wk, k ∈ Dj . The Two Stage method still
results in consistent estimates of Ğ0

ji in the presence of
measurement noise, as long as the r’s are exactly known. This
observation is further explored and generalized in [34]. �

Compare the conditions of the Direct and Two Stage Meth-
ods. For the Two Stage Method there are no restrictions on
algebraic loops, the correlation of the noise terms, or the
presence of confounding variables. However, to use the Two
Stage Method at least one external variable rm must be present
that affects wi (this is not the case for the Direct Method).
Moreover, the excitation conditions of the Two Stage Method
are stricter than those of the Direct Method.

From the perspective of reducing the variance of an esti-
mate, it is desirable to project onto as many external variables
as possible, since this increases the power of the predictor in-
puts relative to the optimal output error residual (not projecting
onto a particular external variable means that the power of the
predictor inputs is less, and that particular external variable
becomes part of the unmodeled component of the output,
increasing the power of the optimal output error residual).

Example 7: Recall the network of Example 3 shown in Fig.
4. Suppose that the objective is to obtain an estimate of G0

21

(denoted in green) using the Two Stage Method. Choose an
output error model structure (H2(q, θ) = 1). Choose D2 =
{1, 3, 4}. For this choice of D2 all conditions of Proposition
4 are satisfied, and therefore Ğ0

21 = G0
21. To ensure that the

estimate of Ğ0
21 is consistent, P2 must also be chosen properly.

Choose to project the predictor inputs onto r1 and r5 (T2 =
{1, 5}). Thus, by Proposition 8 P2 is set to {5}, since there is a
path from r5 to w2 that passes only through wn n ∈ Z2 = {5}.

Now consider projecting only onto r1. In this case, by
Proposition 8, P2 is set to ∅.

Finally, consider the choice D2 = {1, 2, 5}. Futhermore,
choose to project onto both r1 and r5. In this case, by
Proposition 8, P2 is set to ∅. In this case, due to the different
choice of D2, P2 can be chosen as ∅ even though T2 = {1, 5}
just like in the first case considered in this example. �

Example 8: Consider the same network as in Example 6,
shown in Fig. 7. Suppose the objective is to obtain consistent
estimates of G0

32 (marked in green) using the Two Stage
Method. Choose r1 as the external variable to project onto
(T3 = {1}). By the same reasoning as in Example 6, choosing
D3 = {1, 2} or {2, 4} satisfies the conditions of Proposition
4. However, in this case (unlike for the Direct Method) both
these choices of D3 satisfy all the remaining conditions of
Proposition 8 (since confounding variables are not an issue

for the Two Stage Method).
Finally, P3 must be chosen as stated in Proposition 8. There

are two independent paths from r1 to w3,

r1 → w4 → w6 → w3 and r1 → w2 → w3

both of which pass through a variable wn, n ∈ D3, so P3

should be chosen as ∅. �

VII. ALGORITHMIC ASPECTS

In this section an algorithm is presented that provides a
way to check the conditions that the set Dj must satisfy in
order to ensure that Ğ0

ji(q,Dj) of the immersed network is
equal to G0

ji(q) of the original network (see Proposition 4).
The algorithm uses tools from graph theory, therefore, before
presenting the result, consider the following definitions.

Definition 2 (A-B path [35]): Given a directed graph G and
sets of nodes A and B. Denote the nodes in the graph by xi.
A path P = x0x1 · · ·xk, where the xi are all distinct, is an
A-B path if V (P) ∩A = {x0}, and V (P) ∩B = {xk}.

Definition 3 (A-B Separating Set [35]): Given a directed
graph G, and sets of nodes A,B ⊂ V (G), a set X ⊆ V (G)
is an A-B separating set if the removal of the nodes in X
results in a graph with no A-B paths.

The following notation will be useful in order to reformulate
the conditions of Proposition 4 using the notion of separating
sets. Let the node wj be split into two nodes, w+

j to which all
incoming edges (of wj) are connected and w−j to which all
outgoing edges (of wj) are connected. The new node w+

j is
connected to w−j with the edge Gj+j− = 1. Let w+

i and w−i
be defined analogously.

Proposition 9: The conditions of Proposition 4 can be
reformulated as: the set Dj is a {w+

i , w
−
j }-{w

+
j } separating

set.
Proof: The conditions of Proposition 4 can be rewritten

as follows. The set Dj satisfies the following conditions:
1. Dj \{i} is a {wi}-{wj} separating set for the network with

path G0
ji removed,

2. Dj is a {w−j }-{w
+
j } separating set.

These two conditions can be formulated as the single condition
of the proposition.

Note that wi must always chosen to be in Dj to ensure that
Dj is a {w+

i , w
−
j }-{w

+
j } separating set (i.e. Condition (a) of

Proposition 4 is automatically satisfied). This is because there
is always a path w+

i → w−i → w+
2 . Consequently, w−i must

be chosen in the set Dj .
The advantage of reformulating the conditions in terms of

separating sets is that there exist tools from graph theory to
check if a given set is a separating set or to find (the smallest
possible) separating sets [35], [36].

Example 9: Consider the network shown in Fig. 8. Suppose
that the objective is to obtain consistent estimates of G0

21

(denoted in green). Both w1 and w2 have been split into two
nodes as described above.

By Proposition 9 the conditions of Proposition 4 are satisfied
for the given network if D2 is a {w+

1 , w
−
2 }-{w

+
2 } separating

set. The outgoing set {w+
1 , w

−
2 } is denoted in brown, and the

incoming set {w+
2 } is denoted in orange in the figure.



12

w−1

w+
1

G0
21 w+

2

w−2

G0
23

w3 G0
43

w4

G0
12 G0

32 G0
34

w8 G0
84G0

18

G0
26G0

61 G0
27 G0

37

w6 w7G0
76

G0
54

w5

G0
45

v1

v2 v3

v5
v6 v7

v8

r4

r5

r8

Fig. 8. Example of an interconnected network used in Example 9.

There are many possible choices of D2, but the smallest
choice, {w−1 , w6, w3}, is denoted in blue. It is easy to verify
that all paths from the brown set to the orange set pass through
a node in the blue set. �

VIII. DISCUSSION

The approach presented in this paper is a local approach
in the sense that only a (small) subset of internal variables
are required to identify a particular module embedded in the
network. Therefore, even for large networks, the numerical
complexity of obtaining an estimate of a particular module
can be limited by proper choice of predictor inputs. If the
number of predictor inputs is large it may be attractive to
rely on linear regression schemes such as ARX, FIR [21] and
orthogonal basis function expansions [37], as well as IV-type
and subspace algorithms [21].

While we have restricted this paper to dealing with questions
of consistency, variance properties of estimates will be highly
relevant to consider as a function of measured node signals as
predictor inputs, as well as of external variables present.

IX. CONCLUSION

In this paper, identification in dynamics networks has been
investigated. In a dynamic network, unlike in open or closed
loop systems, there are many options as to which variables
to include as predictor inputs. It has been shown that when
identifying in networks, the obtained estimates are conse-
quences of the (chosen) set of predictor inputs. In particular,
the obtained estimates are estimates of the dynamics defined
by the immersed network. Conditions on the predictor inputs
have been presented such that it is possible to obtain consistent
estimates of a module embedded in a dynamic network using
either the Direct or Two Stage methods of identification. These
conditions are useful since they enable the user to design
a least expensive sensor placement scheme or check if it is
possible to avoid using particular variables in the identification
experiment for instance.

X. APPENDIX

A. Proof of Proposition 1

Rather than checking the conditions of Theorem 2 in [25] it
is more straightforward to provide a direct proof of the result.

The following Lemma is used in proving Proposition 1. The
proof can be found in [33].

Lemma 2: Let G be a n ×m matrix of transfer functions,
with n ≤ m. Suppose all principal minors of G are non-zero.
The matrix G can be uniquely factored as (I−G)−1F , where
G and F have the structure defined in (11).
Now follows the proof of Proposition 1.

Proof: Any network can be expressed as[
wj(t)
wD(t)

]
= G0(q)

rj(t) + vj(t)
rD(t) + vD(t)
rZ(t) + vZ(t)

 .
Because the network is well posed, the principal minors of
G are all non-zero. Thus, by Lemma 2, G can be uniquely
factored into Ğ0 and F̆ 0 with the structure (11). If there is an
index ` such that both v` and r` are not present, then setting
the corresponding column of F̆ 0 to zero has no effect on in
the validity of (10) with respect to the signals.

B. Proof of Proposition 2
Proof: The proof proceeds by showing that Algorithm 3

results in matrices Ğ0 and F̆ 0 of the form in Proposition 1.
In Step 2c of Algorithm 3 no path starting from vk (or rk),

k ∈ Dj is ever lifted. Moreover, in the framework considered
in this paper, in the original network, vk, k ∈ V (or rk, k ∈ R)
only has a path to wk. It follows that in the immersed network,
vk (or rk), k ∈ Dj only has a path to wk. Thus, all the off-
diagonal entries of the leading square matrix of F̆ i

0

are zero,
which shows that the form of F̆ i

0

is the same as that of F̆ 0.
In Step 3 of the algorithm all self-loops are removed. Thus

the diagonal entries of Ği
0

are set to zero. This shows that
Ği

0

and Ğ0 have the same form.
By the uniqueness result of Proposition 1 it follows that

F̆ i
0

= F̆ 0 and Ğ0 = Ği
0

C. Proof of Proposition 3
Proof: The proof proceeds by starting with the original

network (2) and removing the internal variables wk, k ∈ Zj
from the equations. The proofs proceeds at a signal level. At
the end of the proof, matrices Ğ0 and F̆ 0 are obtained of the
form required by Proposition 1. Consequently, uniqueness of
the matrices is ensured.

Given a network of the form (3), the variables wZ must be
removed from the equation. This is done by expressing wZ in
terms of wk, k ∈ {j} ∪ Dj , vk, k ∈ Zj , and rk, k ∈ Zj :

wZ = G0
Zjwj +G0

ZDwD +GZZwZ + vZ + rZ

= (I −GZZ)−1(GZjwj +GZDwD + vZ + rZ). (20)

where the inverse exists by Assumption 1. In order to eliminate
wZ from the expression of [wj wD], first express [wj wD] in
terms of wZ , and then substitute in (20):[
wj
wD

]
=

[
0 GjD
GDj GDD

][
wj
wD

]
+

[
GjZ
GDZ

]
wZ +

[
vj
vD

]
+

[
rj
rD

]
=

[
0 GjD
GDj GDD

][
wj
wD

]
+

[
GjZ
GDZ

]
(I −GZZ)−1

[
GZj GZD

][wj
wD

]
+

[
GjZ
GDZ

]
(I −GZZ)−1(rZ + vZ) +

[
vj
vD

]
+

[
rj
rD

]
. (21)
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Collect all the v’s and r’s into a single vector:[
wj
wD

]
=

([
0 GjD
GDj GDD

]
+

[
GjZ
GDZ

]
(I −GZZ)−1

[
GZj GZD

])[wj
wD

]

+

[
1 0 GjZ(I −GZZ)−1

0 I GDZ(I −GZZ)−1

]rj + vj
rD + vD
rZ + vZ

 .
From the statement of the Proposition, the matrix preceding
[wj wD]T is G̃0, and the matrix preceding the r and v terms
is F̃ 0. To put the matrices G̃0 and F̃ 0 into the form required
by Proposition 1, the diagonals of G̃0 must be removed. Let
D denote the diagonal entries of G̃0:[

wj
wD

]
= G̃0

[
wj
wD

]
+ F̃ 0

rj + vj
rD + vD
rZ + vZ


= (I−D)−1(G̃0−D)

[
wj
wD

]
+(I−D)−1F̃ 0

rj+vjrD+vD
rZ+vZ

. (22)

Both matrices in (22 have the same form as Ğ0, and F̆ 0 in
(10). Thus, by Proposition 1, they are equal to Ğ0 and F̆ 0.

D. Proof of Lemma 1

The following lemma is used in the proof. It can be proved
using Mason’s Rules [28], or as shown in Appendix A of [17].

Lemma 3: Consider a dynamic network with transfer matrix
G0 that satisfies all conditions of Assumption 1. Let G0

mn be
the (m,n)th entry of (I − G0)−1. If all paths from n to m
have a delay (are zero) then G0

mn has a delay (is zero). �
Now consider the proof of lemma 1.

Proof: Consider part 1. From Proposition 3, the transfer
function of the (m,n)th entry of Ğ0 (where m 6= n) is

Ğ0
mn =

1

1− G̃0
mm

(
G0
mn+

∑
`1∈Zj

∑
`2∈Zj

G0
m`1G

Z
`1`2G

0
`2n

)
(23)

where GZ`1`2 denotes the (`2, `1) entry of (I − G0
ZZ)−1. By

Lemma 3 if every path from `2 to `1 passing only through
nodes wk, k ∈ Zj has a delay then GZ`1`2 has a delay. Thus,
if every path from wk1 to wk2 that passes only through nodes
wk, k ∈ Zj has a delay, either G0

m`1
, GZ`1`2 , or G0

`2n
has a

delay (for every `1 and `2). By (23) the statement of the lemma
follows.

To show that Ğ0
mn = 0 when there is no path from wm to

wn that passes through only nodes wk, k ∈ Zj follows the
same reasoning, as does part 2 of the Lemma.

E. Proof of Proposition 4

Proof: From Algorithm 3 there are two ways that the
transfer function Ğ0

ji can change to be different from G0
ji: in

Steps 2c and 3. Using the same notation as that in Algorithm
3, the proof will proceed by showing that Conditions (b) and
(c) ensure that no change to Ğ(k)

ji occurs for all k = 1 : d in
Steps 2c and 3 respectively.

Start by investigating Step 2c. A change to G
(k)
ji occurs if

a path has been lifted in Step 2a and resulted in an edge from

wi to wj . By Condition (b) every path from wi to wj passes
through a node wn, n ∈ Dj . Consequently, it will never occur
at any iteration k that a node wn is being removed that has
an incoming edge from wi and an outgoing edge to wj . Thus,
there will never be parallel edges generated from wi to wj
that must be merged in Step 2c.

Similarly, by Condition (c) every path from wj to wj passes
through a node wn, n ∈ Dj . Consequently, it will never occur
at any iteration k of the algorithm that a node wn is being
removed that has an incoming edge from wj and an outgoing
edge to wj . Thus there is never a self loop from wj to wj
generated. Which means that the division in Step 3 will simply
be a division by 1.

F. Proof of Theorem 1

The following Lemma will be used to prove Theorem 1.
Lemma 4: Consider a vector of rational functions

∆X(q, θ) = [∆X1(q, θ1) · · · ∆Xd(q, θd)]
T , where

∆Xk(q, θk) = Lk(q, θk)(X0
k(q) −Xk(q, θk)), where Lk is a

monic transfer function, X0
k is a transfer function and Xk(θk)

is a transfer function parameterized as:

Xk(θk) =
bk0 + bk1q

−1 + · · ·+ bknb
q−nb

1 + ak1q
−1 + · · ·+ akna

q−na
,

where θk = [bk0 · · · bknb
ak1 · · · akna

]T . Suppose the parame-
terization is chosen such that for each ∆Xk(θk), there exists a
parameter vector θ∗ such that ∆X(θ∗) = 0. Consider a (d×d)
power spectral density matrix Φ. If Φ is positive definite for at
least nθ = na + nb + 1 frequencies ωn, where −π < ωn ≤ π
then∫ π

−π
∆X(ejω, θ)TΦ(ω)∆X(e−jω, θ)dω=0 =⇒ ∆Xk(q, θ)=0

for k = 1, . . . , d.
For a proof see [33]. The proof of Theorem 1 now proceeds:

Proof: Consider the proof for Case 2 (Conditions (a) and
(b) hold for only η∗ and H−1

j (q, η∗)pj(t,Dj) is white). The
proof for Case 1 is not presented here since it follows the exact
same line of reasoning, and is simpler than, that of Case 2.
Since the noise model is independently parameterized from the
module models, let η denote the parameters associated with
the noise model, and let θ denote the parameters associated
with the modules.

For notational simplicity, let H−1
j (q, η∗)pj(t,Dj) be de-

noted as sj(t,Dj). The reasoning will be split into two steps:
1. Show that if Conditions (a) and (b) hold at η∗, then the

following bound on the objective function holds:

V̄ (θ) ≥ Ē
[(
H−1
j (q, η∗)pj(t,Dj)

)2]
. (24)

2. Show that when equality holds it implies that Gjk(q, θ) =
Ğ0
jk(q,Dj), k ∈ Dj , and Fjk(q, θ) = F̆ 0

jk(q,Dj), k ∈ Pj .
Step 1. From (14) and (6) it follows that

V̄ (θ, η) = Ē
[(
H−1
j (q, η)

(
wj(t)−

∑
k∈Dj

Gjk(q, θ)w
(X )
k (t)

−
∑
k∈Pj

Fjk(q, θ)rk(t)
))2]

.
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By (17) and (18) wj can be expressed in terms of wk, k ∈ Dj ,
rk, k ∈ Pj and a residual, pj(t,Dj) resulting in:

V̄ (θ, η) = Ē
[(
H−1
j (q, η)

(∑
k∈Dj

∆Gjk(q, θ,Dj)w(X)
k (t)

+
∑
k∈Pj

∆Fjk(q, θ,Dj)rk(t) + pj(t,Dj)
))2]

(25)

where ∆Gjk(q, θ,Dj) = Ğ0
jk(q,Dj) − Gjk(q, θ), and

∆Fjk(q, θ,Dj) = F̆ 0
jk(q,Dj)− Fjk(q, θ). If (25) is evaluated

at η∗, the third term is equal to sj .
By Conditions (a) and (b) sj is uncorrelated to the first

two terms in the expression. Moreover, since sj is white, it
is also uncorrelated to delayed versions of itself which means
that E[∆Hj(q, η)sj(t) · sj(t)] = 0 where ∆Hj(q, η,Dj) =
Hj(q, η

∗)−Hj(q, η) (the expression holds since Hj is monic,
and thus ∆Hj has a delay).

Using this fact to simplify (25) results in

V̄ (θ, η) = Ē
[
s2
j (Dj)

]
+ Ē

[
H−1
j (η)

(∑
k∈Dj

∆Gjk(θ,Dj)w(X)
k

+
∑
k∈Pj

∆Fjk(θ,Dj)rk + ∆Hj(η,Dj)sj(Dj)
)2]

. (26)

The first term of V̄ (θ, η) is not a function of θ or η, proving
that V̄ (θ, η) ≥ Ē

[
s2
j (t,Dj)

]
as desired.

Step 2. Now it is shown that

V̄ (θ,η)= Ē
[
s2
j (t,Dj)

]
⇒


Gjk(q, θ)=Ğ0

jk(q,Dj), k ∈ Dj
Fjk(q, θ)= F̆ 0

jk(q,Dj), k ∈ Pj
Hj(q, η)=Hj(q, η

∗)

Consider the equation V̄ (θ, η) = Ē
[
s2
j (t,Dj)

]
. From (26)

using Parseval’s theorem, this results in:

1

2π

∫ π

−π
∆X(ejω, θ)Φ(ω)∆XT (e−jω, θ)dω = 0, (27)

for all ω ∈ [−π, π], where

∆X =H−1
j

[
∆Gjk1 · · · ∆Gjkn ∆Fjm1

· · · ∆Fjm`
∆Hj

]
,

Φ(ω) =

 ΦwD (ω) ΦwDrP (ω) ΦwDsj (ω)
ΦrPwD (ω) ΦrP (ω) ΦrPsj (ω)
ΦsjwD (ω) ΦsjrP (ω) Φsj (ω)

 , (28)

where k∗ ∈ Dj , m∗ ∈ Pj and Φ∗∗(ω) are the (cross) power
spectral densities of the denoted variables. Recall from (18)
that wj can be expressed in terms of w(X )

k , k ∈ Dj , rk, k ∈ Pj
and pj . By rearanging (18) an expression for sj is

sj = H0−1

j

(
wj −

∑
k∈Dj

Ğ0
jkw

(X )
k −

∑
k∈Pj

F̆ 0
jkrk

)
Consequently, (28) can be expressed as JΦwJ

H , where

J =

 I 0 0
0 I 0

−Ğ0
jD −F̆ 0

jD 1

 ,
Φw is the power spectral density of
[wk1 · · · wkn rm1

· · · rm`
wj ], and (·)H denotes conjugate

transpose. Because J is full rank for all ω, and Φw is full rank
for at least nθ frequencies (by the statement of the theorem) it
follows that Φ in (27) is full rank for at least nθ frequencies.
Because Φ(ω) is positive definite for at least nθ frequencies,

and the parameterization is chosen flexible enough, it follows
from Lemma 4 that ∆X = 0. By the definition of ∆X it
follows that (27) implies Gjk(q, θ∗) = Ğjk(q,Dj), k ∈ Dj ,
Fjk(q, θ∗) = Ğjk(q,Dj), k ∈ Pj , and Hj(q, θ

∗) =Hj(q, η
∗)

as desired.

G. Proof of Proposition 5
Proof: The proof proceeds by showing that Conditions

(a) and (b) hold at η∗, and that H−1
j (η∗)pj is white noise. By

Condition (d), pj is not a function of any r terms, and thus
from (17) it follows that pj = v̆j . Recall from (10) that the
equation defining the immersed network is w = Ğ0w+F̆ 0r+v̆
where w = [wj wD]T , r = [rj rD rZ ]T and v̆ is defined in (12).
Consequently, wk can be expressed as

wk = Ğ0
kj(v̆j + rj + F̆ 0

jZrZ) +
∑
n∈Dj

Ğ0
kn(v̆n + rn + F̆ 0

nZrZ)

where Ğ0
jk denotes the (j, k) entry of (I − Ğ0)−1. Using

this expression for wk, Condition (a) of Theorem 1 can be
expressed as:

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj ,θ)wk(t)]= Ē

[
H−1
j (q, η∗)v̆j(t)

·∆Gjk(q,Dj ,θ)
∑

n∈Dj∪{j}

Ğ0
kn(q)

(
v̆n(t) + rn(t) + F̆ 0

nZ(q)rZ(t)
)]
.

By Assumption 1 every vk is uncorrelated to every external
variable. Moreover, by Condition (a) v̆j is uncorrelated to the
other noise terms in the immersed network, and so the above
equation can be simplified:

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj , θ)wk(t)]

= Ē[H−1
j (q, η∗)v̆j(t) ·∆Gjk(q,Dj , θ)Ğ0

kj(q)v̆j(t)] (29)

By Lemma 3 (in Appendix X-D) the transfer function Ğ0
kj has

a delay if every path (in the immersed network) from wj to wk
has a delay. It follows by Condition (b) that either Ğ0

kj or Ğ0
jk

(or both) has a delay. By Condition (c) it follows that either
Ğ0
kj or ∆Gjk(q,Dj , θ) (or both) has a delay. The result is that

∆Gjk(q,Dj , θ)Ğ0
kj v̆j is a function of only delayed versions of

v̆j (and thus delayed versions of ĕj , where ĕj is the whitened
version of v̆j as defined in (13)). Thus it follows that

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj , θ)wk(t)]

= Ē[ĕj(t) ·∆Gjk(q,Dj , θ)Ğ0
kj(q)v̆j(t)] = 0

which means that the Condition (a) of Theorem 1 holds.
Since pj = v̆j , and by Assumption 1, all v’s are uncorrelated

to all r, it follows that Condition (b) holds as well.

H. Proof of Proposition 6
Proof: The following reasoning will show that Ē[v̆j(t) ·

v̆k(t− τ)] = 0 for all τ . From (12),

Ē[v̆j(t) · v̆k(t− τ)]= Ē[
(
vj(t) + F̆ 0

jZ(q)vZ(t)
)

·
(
vk(t− τ) + F̆ 0

kZ(q)vZ(t− τ)
)
]. (30)
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Consider the following three facts. First, by Condition (a), vj
is uncorrelated to all vk, k ∈ Dj . Secondly,

Ē[vj(t) · F̆ 0
kn(q)vn(t− τ)] = 0,∀τ, and ∀n ∈ Zj (31)

by the following reasoning. Either one of the conditions holds:
• There is a path from vn, n ∈ Zj to wk that passes only

through nodes wk, k ∈ Zj . In this case, by Condition (a)
vj is uncorrelated to vn.

• There is no path from vn, n ∈ Zj to wk. In this
case, by Lemma 1, F̆ 0

kn is zero. Consequently, Ē[vj(t) ·
F̆kn(q)vn(t)] = 0.

Thirdly, by the same reasoning and by Condition (b), Ē[vk(t) ·
FjZ(q)vZ(t − τ)] = 0 for all τ . Consequently, (30) can be
simplified to:

Ē[v̆j(t)v̆k(t−τ)]= Ē[F̆ 0
jZ(q)vZ(t) · F̆ 0

kZ(q)vZ(t− τ)].

By Parseval’s Theorem this equation can be expressed as

Ē[v̆j(t)v̆k(t−τ)]=
1

2π

∫ π

−π
F̆ 0
jZ(ejω)ΦvZ (ω)F̆ 0T

kZ (e−jω)ejωτdω.

By Condition (c), ΦvZ is diagonal, and so

Ē[v̆j(t)v̆k(t−τ)]=
1

2π

∫ π

−π

∑
`∈Zj

F̆j`(e
jω)F̆k`(e

−jω)ejτωφ`(ω)dω

where φ` is the power spectral density of v`. By Lemma 1 the
transfer function F̆ 0

jk is zero if there is no path from vk to wj
that passes only through nodes wk, k ∈ Zj . Consequently, by
Condition (d) for each `, ` ∈ Zj , either F̆ 0

j` or F̆ 0
k` (or both)

are equal to zero. Consequently, Ē[v̆j(t)v̆k(t−τ)] is equal to
zero for al τ , and for all k ∈ Dj .

I. Proof of Proposition 8

Proof: The proof proceeds by showing that Case 1 of
Theorem 1 holds. The predictor inputs w(T j)

k , k ∈ Dj and rk,
k ∈ Pj are functions of all rk, k ∈ {Tj} , except those rk
for which there is no path rk to wj (the projection onto this
external variable is zero in this case). Thus it is sufficient
to show that the optimal output error residual of wj is not
correlated to these r’s. From (17) pj is equal to

pj(t,Dj) = F̆ 0
jj(q,Dj)rj(t) + v̆j(t) +

∑
k∈(Zj∩Rj)\Pj

F̆ 0
jk(q,Dj)rk(t)

+
∑
k∈Dj

Ğ0
jk(q,Dj)w

(⊥Tj)
k (t). (32)

By Assumption 1 all r’s are uncorrelated to all v’s. Thus,
only the r terms in pj could cause a correlation between pj
and the predictor inputs. In particular, it must be shown that
pj is not a function of any rk, k ∈ Tj .

Split the variables in Tj into two categories: the rk’s for
which at least one path from rk to wj passes only through
nodes in Zj , and the rk’s for which all paths from rk to wj
pass through at least one node wk, k ∈ Dj . By construction,
all rk’s that are in the first category are in Pj . Since no variable
rk ∈ Pj appears in pj (see (32) none of the variables in the
first category appear in the expression for pj .

By Lemma 1 it follows that for all rk in the second category
F̆ 0
jk is zero. Thus, from (32) it follows that no rk term in the

first category will appear in the expression for pj .
Thus, pj is not a function of any rk, k ∈ Tj . Consequently,

pj is uncorrelated to the predictor inputs, and the conditions
of Theorem 1 are satisfied.

Lastly, to satisfy all the conditions of Theorem 1
we must show that the power spectral density Φ of
[wj w

(Tj)
k1

· · · w(Tj)
kn

rm1 · · · rm`
] is positive definite for at

least nθ frequencies. By (18) pj can be expressed as a function
of w(Tj

k ), k ∈ Dj , and rk, k ∈ Pj and pj . It has allready
been shown that pj is uncorrelated to all the predictor inputs.
Consequently, the power spectral density Φ is equal to

Φ =

[
1 [−Ğ0

jD − F̆ 0
jD]

0 I

] [
φp 0
0 Φw

] [
1 [−Ğ0

jD − F̆ 0
jD]

0 I

]H
where φp is the power spectral density of pj and Φw is the
power spectral density of [w

(Tj)
k1

· · · w(Tj)
kn

rm1
· · · rm`

]
(which is positive definite at nθ frequencies). Because the first
(and last) matrices are full rank for all ω it follows that Φ
is full rank for at least nθ frequencies. Consequently all the
conditions of Case 1 of Theorem 1 are satisfied.
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