Generic Properties of Dynamical Systems - Archive ouverte HAL
Article Dans Une Revue Encyclopedia of Mathematical Physics Année : 2006

Generic Properties of Dynamical Systems

Résumé

The state of a concrete system (from physics, chemistry, ecology, or other sciences) is described using (finitely many, say n) observable quantities (e.g., positions and velocities for mechanical systems, population densities for echological systems, etc.). Hence, the state of a system may be represented as a point $x$ in a geometrical space $\mathbb R^n$. In many cases, the quantities describing the state are related, so that the phase space (space of all possible states) is a submanifold $M\subset \mathbb R^n$. The time evolution of the system is represented by a curve $x_t$, $t \in\mathbb R$ drawn on the phase space $M$, or by a sequence $x_n \in M$, $n \in\mathbb Z$, if we consider discrete time.

Mots clés

Fichier principal
Vignette du fichier
B0.pdf (184.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01348445 , version 1 (27-07-2016)

Licence

Identifiants

Citer

Christian Bonatti. Generic Properties of Dynamical Systems. Encyclopedia of Mathematical Physics, 2006, pp. 494-502. ⟨10.1016/B0-12-512666-2/00164-4⟩. ⟨hal-01348445⟩
194 Consultations
1725 Téléchargements

Altmetric

Partager

More