Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR

Résumé

We present CROC (Coreference Resolution for Oral Corpus), the first machine learning system for coreference resolution in French. One specific aspect of the system is that it has been trained on data that come exclusively from transcribed speech, namely ANCOR (ANaphora and Coreference in ORal corpus), the first large-scale French corpus with anaphorical relation annotations. In its current state, the CROC system requires pre-annotated mentions. We detail the features used for the learning algorithms, and we present a set of experiments with these features. The scores we obtain are close to those of state-of-the-art systems for written English.
Fichier principal
Vignette du fichier
Coreference_Resolution_for_French_Oral_Data_Machine_Learning_Experiments_with_ANCOR.pdf (236.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01344977 , version 1 (13-07-2016)

Identifiants

  • HAL Id : hal-01344977 , version 1

Citer

Adèle Désoyer, Frédéric Landragin, Isabelle Tellier, Anaïs Lefeuvre, Jean-Yves Antoine, et al.. Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing'2016), Apr 2016, Konya, Turkey. ⟨hal-01344977⟩
512 Consultations
660 Téléchargements

Partager

More