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adele.desoyer@gmail.com
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Abstract. We present CROC (Coreference Resolution for Oral Corpus),
the first machine learning system for coreference resolution in French.
One specific aspect of the system is that it has been trained on data that
come exclusively from transcribed speech, namely ANCOR (ANaphora
and Coreference in ORal corpus), the first large-scale French corpus with
anaphorical relation annotations. In its current state, the CROC system
requires pre-annotated mentions. We detail the features used for the
learning algorithms, and we present a set of experiments with these fea-
tures. The scores we obtain are close to those of state-of-the-art systems
for written English.

Keywords: mention-pair model, dialogue corpus, coreference resolu-
tion, machine learning

1 Introduction

Coreference Resolution has now become a classical task in NLP. This task con-
sists in identifying coreference chains of mentions in texts. Supervised machine
learning approaches are now largely dominant in this domain, but they require
annotated corpora. No such corpus was available for French so far. In this pa-
per, we first describe ANCOR, the first large-scale French corpus annotated with
coreferent mentions. It is made of transcribed oral data, which is a specificity
relatively to corpora available for other languages. We then present CROC, a
baseline system which has been learned with ANCOR, and a variant. Their per-
formances are very close to those observed on coreference resolution challenges
for English.

2 The ANCOR Corpus

We present ANCOR, a French corpus annotated with coreference relations which
is freely available and large enough to serve the needs of data-driven approaches



in NLP. With a total of 488,000 lexical units, ANCOR is among the largest coref-
erence annotated corpora available at present and the only one of comparable
size in French.

The main originality of this resource lies in the focus on spoken language.
Nowaday systems using NLP for Information retrieval or extraction, for text
summarization or even for machine translation have mainly been designed for
written language. Oral language presents some interesting specificities, such as
the absence of sentence units, the lack of punctuation, the presence of speech
disfluencies, and, obviously, the grammatical variability of utterances. See [26]
for a more detailed list of oral specific features which make French oral processing
a big challenge.

2.1 Presentation of the corpus

The ANCOR corpus is made of spoken French and it aims at representing a
certain variety of spoken types. It integrates three different corpora that were
already transcribed during previous research projects (Table 1). The first and
larger one has been extracted from the ESLO corpus, which collects sociolin-
guistic interviews [16]. This corpus can be divided in two sub-corpora (ESLO-
ANCOR and ESLO-CO2), corresponding to two distinct periods of recordings.
It is characterized by a low level of interactivity. On the opposite, OTG and Ac-
cueil UBS concern highly interactive Human-Human dialogues [18]. These two
corpora differ by the media of interaction: direct conversation for the first one,
phone call for the other one. Conversational speech (OTG and Accueil) only rep-
resents 7% of the total because of the scarcity of such free resources in French.
All corpora are freely distributed under a Creative Commons license.

Corpus Speech type Interactivity Size Duration

ESLO interview low 452,000 words 27,5 hours
ESLO ANCOR 417,000 words 25 hours
ESLO CO2 35,000 words 2.5 hours

OTG task oriented conv- high 26,000 words 2 hours
ersational speech

Accueil UBS phone conversa- high 10,000 words 1 hour
tional speech

Table 1. ANCOR source corpus types and characterization

2.2 Annotation scheme

The corpus has been fully annotated by hand on the Glozz platform [15]. Glozz
produces a stand-off XML file structured according to a DTD that was specifi-
cally designed for ANCOR (it has also been translated in the MMAX2 format



for portability purposes). This stand-off annotation allows a multi-layer work
and enrichments through time.

The scope of annotation takes into account all noun phrases (NP from now)
including pronouns but strictly restricts to them. As a result, the annotation
scheme discards coreferences involving verbal or propositional mentions which
have been annotated in the OntoNotes corpus. This restriction was mainly in-
tended to favor data reliability by focusing on easily identifiable mentions [12].

Another specificity of the scheme is the annotation of isolated mentions. NPs
are annotated even if they are not involved in any anaphoric relation, and this
is a real added value for coreference resolution since the detection of singletons
is known to be a difficult task [20].

We followed a detailed annotation scheme in order to provide useful data
for deep linguistic studies and machine learning. Every nominal group is thus
associated with the following features:

– Gender,
– Number,
– Part of Speech (only mentions have been annotated with these features, the

corpus does not provide any morpho-syntactic annotation level on its own
for other tokens),

– Definition (indefinite, definite, demonstrative or expletive form),
– PP: inclusion or not in a prepositional phrase,
– NE: Named Entity Type, as defined in the Ester2 coding scheme [8],
– NEW: discourse new vs. subsequent mention.

Coders were asked to link subsequent mentions with the first mention of
the corresponding entity (discourse new) and to classify the relation among five
different types of coreference or anaphora:

– Direct coreference: coreferent mentions are NP with the same lexical head.
– Indirect coreference: NP coreferent mentions with distinct lexical head

(schooner . . . vessel).
– Pronominal anaphora: the subsequent coreferent mention is a pronoun.
– Bridging anaphora: non coreference, but the subsequent mention depends

on its antecedent for its referential interpretation (meronomy for instance:
the schooner . . . its bowsprit).

– Bridging pronominal anaphora: the subsequent mention is a pronoun.
Its interpretation depends on its antecedent but the two mentions are not
coreferent (for instance: the hostel . . . they are welcoming).

This annotation scheme is quite similar to previous works on written language
[5, 28]. Since ANCOR represents the first large coreference corpus available for
French, it is important that the resource should concern researchers that are
working on written documents too. Unlike [9], we did not distinguish between
several sub-categories of bridging anaphora. We consider such a refined taxonomy
to exceed the present needs of NLP while introducing a higher subjectivity in
the annotation process. For the same reasons, we did not consider the relation of
near-identity proposed in [20]. Recent experiments have shown that near-identity
leads to a rather low inter-coders agreement [3].



2.3 Distributional data

This section gives a general outline of the annotated data, to roughly show what
should be found in the resource.

Table 2 details how the mentions and relations are distributed among the sub-
corpora. With more than 50,000 relations and 100,000 mentions, ANCOR should
fulfill the needs of representativity for linguistic studies and machine learning
experiments. Table 3 shows that the repartition of nominal and pronominal
entities is noticeable stable among the four corpora and leads to a very balanced
overall distribution (51.2% vs. 48.8%).

Corpus Number of mentions Number of relations

ESLO 106,737 48,110
ESLO ANCOR 97,939 44,597
ESLO CO2 8,798 3,513

OTG 7,462 2,572

Accueil UBS 1,872 655

Total 116,071 51,337

Table 2. Content of the different sub-corpora

Entities Nominal Pronouns % of NE

ESLO ANCOR 51.8 48.4 66.3
ESLO CO2 49.4 50.6 52,4
OTG 47.5 52.5 48.6
Accueil UBS 48.5 51.5 43.3

Total 51.2 48.8 59.8

Table 3. Mentions: distributional information

This observation certainly results from a general behavior of French speak-
ers: pronominal anaphora are indeed an easy way for them to avoid systematic
repetitions in a coreference chain.

In addition, ANCOR contains around 45,000 annotated Named Entities (NE).
Therefore, it should stand for a valuable resource for NE recognition applica-
tions. 26,722 NE have been annotated as persons, 3,815 as locations, 1,746 as
organizations, 1,496 as amounts, 1,390 for time mentions and 1,185 as products.

Finally, Table 5 presents the distribution of coreference/anaphora relations.
Once again, strong regularities between the sub-corpora are observed. In par-
ticular, direct coreference and pronominal anaphora are always prevalent. AN-



Person Location Organization Amount Time Product

26,722 3,815 1,746 1,496 1,390 1,185

Table 4. Most frequent named entities in ANCOR

Direct Indirect Pronominal Bridging Bridging pronominal

38,2 6,7 41,1 9,8 1,0

Table 5. Relations: distributional percentages

COR contains around 20,000 occurrences of direct coreference and pronominal
anaphora which are always prevalent through the corpus.

2.4 Annotation reliability estimation

The estimation of data reliability is still an open issue on coreference annotation.
Indeed, the potential discrepancies between coders frequently lead to alignment
mismatches that prevent the direct application of standard reliability measures
[19, 1, 15]. We propose to overcome this problem by assessing separately the
reliability of 1) the delimitation of the relations and 2) the annotation of their
types. More precisely, three experiments have been conducted:

1. Firstly, we have asked 10 experts to delimitate the relations on an extract
of ANCOR. These coders were previously trained on the annotation guide.
We computed, on the basis of every potential pair of mentions, standard
agreement measures: κ [4], α [11] and π [22]. This experiment aims above all
at evaluating the degree of subjectivity of the task rather than the reliability
of the annotated data, since the experts were not the coders of the corpus.

2. On the contrary, the second experiment concerned the annotators and the
supervisor of the corpus. We asked them to re-annotate an extract of the
corpus. Then we computed intra-coders agreement through a comparison to
what they really performed on the actual corpus. This experiment aims at
providing an estimation of the coherence of data.

Corpus ESLO Ancor ESLO CO2 OTG Accueil UBS Total

Direct 41,1 35,2 39,7 40,5 38,2

Indirect 7,3 11,2 6,1 7,5 6,7

Pronoun anaphora 43,9 38,2 46,4 46,0 41,1

Bridging anaphora 10,4 14,4 13,5 11,0 9,8

Pronoun bridging 0,9 1,0 3,3 0,6 1,0

Table 6. Coreference/anaphora: distributional percentages



3. Finally, we asked our 10 first experts to attribute one type to a selection
of relations that were previously delimited in the ANCOR corpus. We then
computed agreement measures on the resulting type annotation.

Agreement κ π α

Delimitation: inter-coder agreement 0.45 0.45 0.45

Delimitation: intra-coder agreement 0.91 0.91 0.91

Type categorization: inter-coder agreement 0.80 0.80 0.80

Table 7. Agreement measures for the ANCOR corpus

We observe on table 7 very close results with the three considered reliability
metrics (no difference before the 4th decimal). This is not surprising since we
consider a binary distance between classes. The inter-coder agreement on delim-
itation is rather low (0.45). One should however note that this measure should
be biased by our discourse-new coding scheme. Indeed, if a disagreement only
concerns the first mention of a coreference chain, all the subsequent relations
will unjustifiably penalize the reliability estimation. Further measures to come
with the chain coding scheme will soon give an estimation of this potential bias.
Anyway, this rather low agreement suggests that the delimitation task is highly
prone to subjectivity, even when coders are trained. In particular, a detailed
analysis of confusion matrices shows that most discrepancies occur between the
delimitation of a bridging anaphora and the decision to not annotate a relation.
Besides, this kind of disagreement appears to be related to personal idiosyn-
crasies. On the contrary, the results become very satisfactory when you consider
intra-coders agreement (0.91). This means that our coders followed a very coher-
ent strategy of annotation, under the control of the supervisor. This coherence
is, in our opinion, an essential guarantee of reliability. Lastly we observed very
good agreements on the categorization task (0.80), which reinforce our decision
not to consider near-identity or detailed bridging types.

3 Machine Learning for Coreference Resolution

Coreference Resolution has become a classical task for NLP challenges, e.g.
those organized by MUC (http://www.itl.nist.gov/iaui/894.02/related_
projects/muc/proceedings/muc_7_toc.html), ACE (http://www.itl.nist.
gov/iad/mig//tests/ace/), SemEval (http://semeval2.fbk.eu/semeval2.
php?location=tasks) or CoNLL (http://conll.cemantix.org/2011/ & then
http://conll.cemantix.org/2012/). But none of these challenges included
French corpora. For French, as no labelled data were available before ANCOR,
only hand-crafted systems have been proposed so far [27, 13]. We rely instead
on machine learning approaches. In this section we present our system, named



CROC for “Coreference Resolution for Oral Corpus”. It only treats the co-
reference task. We thus suppose that every mention has already been recognized
and associated with its specific features (see section 2.2). The system was trained
on the ANCOR Centre corpus, using the Weka machine learning platform [29].

3.1 Brief state of the art

Several approaches have been proposed to reformulate coreference resolution
as a machine leaning problem. The first and simpler one is the pairwise ap-
proach which proposes to classify every possible pair of referring mentions as
co-referential or not. This approach assumes that referring mentions are pro-
vided (as we do in this paper) and requires a post-processing to build global
chains from a set of local pairs. In order to do so, [23, 17] apply a Closest-First
strategy, which attaches a mention to its closest (on the left) co-referring other
mention, whereas [2, 24] propose a Best-First strategy, taking into account “co-
referential probabilities”.

Twin-candidate models [31] are variants of the pairwise approach in which
the classification is applied to triples instead of pairs: an anaphoric mention and
two candidates for its antecedent (the result being either first or second depend-
ing on which of the two candidates is the selected antecedent). criteria between
candidates. Other more sophisticated models such as the Twin-candidate [31],
mention-ranking [6] or entity-mention [30] have also been proposed. Our corefer-
ence resolution system is a baseline, it will thus use the pairwise and Closest-First
strategies.

3.2 Representation of the data in CROC

System Language Corpus MUC B3 CEAF BLANC

[23] English MUC-7 60.4 — — —
[17] English MUC-7 63.4 — — —
[25] English ACE-2003 67.9 65.9 — —
[24] English MUC-7 62.8 79.4 — —
[10] English ACE-2004 67.0 77.0 — —
[12] English CoNNL-2012 68.8 54.56 50.20 —
[13] French heterogeneous 36 69.7 55 59.5

Table 8. Results of end-to-end systems

We have developed CROC as a baseline system which follows the pairwise
and closest-first strategies. Pairwise systems rely on a good representation of
pairs of mentions. In state of the art models, this representation is usually based
on the classical set of features proposed in [23], augmented by those of [17]. For



System Language Corpus MUC B3 CEAF BLANC

[31] English MUC-7 60.2 — — —
[14] English ACE-2 80.7 77.0 73.2 77.2
[7] English ACE-2 71.6 72.7 67.0 —
[2] English ACE-2004 75.1 80.8 75.0 75.6

CROC French ANCOR 63.45 83.76 79.14 67.43
One-Class SVM French ANCOR 61.73 84.58 80.41 69.66

Table 9. Results of systems starting with pre-annotated mentions

our experiments, we used all of these features when they are available in the
corpus, plus some new ones we designed. The added features concern speakers
and speech turns: they are specific to oral data (in particular to dialogues). One
of our purposes is to evaluate the impact of these oral-specific features on the
results. For each candidate pair of mentions (i,j), our set of features includes (cf.
also table 10):

1. features characterizing each mention i and j:
– at the morphological level: is it a pronoun? is it a definitive SN? is it a

demonstrative SN?
– at the enunciative level: is it a new mention?
– at the semantic level: is it a named entity? of which type? Note that no

freely available reliable semantic network is available for French, so no
other semantic feature was used.

2. relational features, characterizing the pair:
– at the lexical level: are the mentions strictly equal? partly equal?
– at the morphosyntactic level: do they agree in gender? in number? Note

that, in French, even if personal pronouns like “il” (he), “elle” (she)...
agree in gender and number with their antecedent, possessive pronouns
like “son”, “sa”... (his, her...) agree with the noun they introduce and
not with the referred antecedent.

– at the spatial level: how many characters/tokens/mentions/speech turns
separate them?

– at the syntactic level: is one of the mentions included in the other one?
– at the contextual level: are their preceding/next tokens the same?
– at the enunciative level: are they produced by the same speaker?

3.3 Baseline results

From the initial corpus, we kept 60% of data for learning, 20% for development,
and 20% for test. In order to estimate the influence of the learning corpus size, we
distinguished three sets: a small one (71,881 instances), a medium one (101,919
instances) and a big one (142,498 instances). In these sets, 20% of instances are



Features Definitions Possible values

1 m1 type syntactic category of m1 {n, pr, unk, null}
2 m2 type syntactic category of m2 {n, pr, unk, null}
3 m1 def definition of m1 {unk, indef, expl,
4 m2 def definition of m2 def sple, def dem}
5 m1 gender gender of m1 {m, f, unk, null}
6 m2 gender gender of m2 {m, f, unk, null}
7 m1 number number of m1 {sg, pl, unk, null}
8 m2 number number of m2 {sg, pl, unk, null}
9 m1 new is a new entity introduced by m1? {yes, no, unk, null}

10 m2 new is a new entity introduced by m2? {yes, no, unk, null}
11 m1 en entity type of m1 {pers, fonc, loc,

org, prod, time, no,
12 m2 en entity type of m2 amount, unk, null,

event}
13 id form are m1 and m2 forms identical? {yes, no, na}
14 id subform are there identical sub-forms? {yes, no, na}
15 incl rate tokens covering ratio real

16 com rate common tokens ratio real

17 id def is there definition equality? {yes, no, na}
18 id type is there type equality? {yes, no, na}
19 id en is there named entity type equality? {yes, no, na}
20 id gender is there gender equality? {yes, no, na}
21 id number is there number equality? {yes, no, na}
22 distance mention distance (number of mentions) real

23 distance turn distance (number of speech turns) real

24 distance word distance (number of words) real

25 distance char distance (number of characters) real

26 embedded embedding of m2 in m1? {yes, no, na}
27 id previous are previous tokens identical? {yes, no, na}
28 id next are next tokens identical? {yes, no, na}
29 id spk are speakers identical? {yes, no, na}
30 id new are discursive status identical? {yes, no, na}

Table 10. CROC complete feature set



coreferent pairs that are directly extracted from the corpus, and 80% are not-
coreferent pairs (negative examples). We also tested different sets of features. In
particular, we distinguished three sets: a first one that includes all features, a
second one with only relational features, and a third one with all the features
that are not linked to oral specificities. A last source of variation concerned
the machine learning algorithm used: we tried decision trees, SVM (SMO with
default parameters), and Naive Bayes using the Weka platform.

Experiments involving development data showed that the best-performing
model is the one calculated by SVM on small training set of data described by
all features. Test data are submitted to this model, and the results are filtered by
the Closest-First method, retaining only the closest antecedent if several pairs
involving a mention were found coreferent. We present in tables 8 and 9 the re-
sults of some state-of-the-art coreference resolution systems, for the four metrics
dedicated to coreference resolution. Oral-specific features do not significantly
improve the results.

3.4 One-class SVM

One of the main problems when using the pairwise approach is that, in order to
train the binary classification model, artificial negative instances must be gen-
erated. Since there is no information to decide whether a pair of not-coreferent
mentions is plausible or not, all possible pairs must be generated. The number
of such pairs is polynomial in the length of a given mention set in a text, and
this in turn means that negative instances are by far more numerous than posi-
tive instances. Since this may create a problem of unbalanced representation of
positive and negative classes in SVM, heuristics have been proposed to filter out
part of negative instances [23, 17]. Despite such heuristics, negative instances are
still much more than positive ones.

In order to overcome this problem we investigated the use of models which
do not need negative instances. One such model still belongs to the SVM family,
namely One-class SVM [21]. One-class SVM only needs positive instances, and
instead of separating positive and negative instances from each other, separates
positive instances from the origin. In order to make a comparison with our
baseline, we trained such a model with exactly the same data and features. The
results are shown in table 9, line One-Class SVM. Our research in this direction
is in progress, but we can see that currently results obtained with this approach
are roughly equivalent to baseline results.

4 Conclusion and Perspective

Most current researches on coreference resolution concern written language. In
this paper, we presented experiments that were conducted on ANCOR, a large
French corpus based on speech transcripts, annotated with rich information and
coreference chains. This corpus represents the first significant effort to provide
sufficient coreference training data in French for machine learning approaches.



We described CROC, a baseline approach for automatic coreference resolution
on French, as well as another machine learning approach based on one-class
SVM. Our first results are roughly equivalent to state-of-the-art performances,
which suggests that standard ML approaches for coreference resolution should
apply satisfactory on spoken language.

For further investigation, we plan to more carefully study the impact of the
various corpus origins on the final results. Does the speech type and/or the level
of interactivity influence the way co-reference chains are built in dialogues? To
better compare our results with the state of the art, other more complex learning
models also need to be tested on these data. And finally, to provide a real end-
to-end system, we have to automatically identity the mentions and their specific
features, as a pre-processing step.
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descriptions définies. TAL 46(1), 115–139 (2005)

10. Haghighi, A., Klein, D.: Coreference resolution in a modular, entity-centered model.
In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. pp. 385–393
(2010)

11. Krippendorff, K.: Content Analysis: an Introduction to its Methodology. SAGE
Publications, Inc. (2004)

12. Lassalle, E.: Structured Learning with Latent Trees: A Joint Approach to Coref-
erence Resolution. Ph.D. thesis, Université Paris Diderot (2015)
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14. Luo, X., Ittycheriah, A., Jing, H., Kambhatla, N., Roukos, S.: A mention-
synchronous coreference resolution algorithm based on the bell tree. In: Proceed-
ings of the 42nd Annual Meeting on Association for Computational Linguistics
(2004)
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