Brownian motion and Random Walk above Quenched Random Wall - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Brownian motion and Random Walk above Quenched Random Wall

Résumé

We study the probability of a random walk staying above a trajectory of another random walk. More precisely, let {Bn} n∈N and {Wn} n∈N be two centered random walks (subject to moment conditions). We establish that P (∀ n≤N Bn ≥ Wn|W) ~ N −γ , where γ is a non-random exponent and ~ is understood on the log scale. In the classical setting (i.e. Wn ≡ 0) it is well-known that γ = 1/2. We prove that for any non-trivial wall W one has γ > 1/2 and the exponent γ depends only on Var(B1)/Var(W1). Further, we prove that these results still hold if B depends weakly on W , this problem naturally emerges in studies of branching random walks in a time-inhomogenous random environment. They are valid also in the continuous time setting, when B and W are (possibly perturbed) Brownian motions. Finally, we present an analogue for Ornstein-Uhlenbeck processes. This time the decay is exponential exp(−γN).
Fichier principal
Vignette du fichier
BMoverBM.pdf (613.99 Ko) Télécharger le fichier
figure.pdf (49.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01322463 , version 1 (27-05-2016)
hal-01322463 , version 2 (18-05-2019)

Identifiants

  • HAL Id : hal-01322463 , version 1

Citer

Bastien Mallein, Piotr Miłoś. Brownian motion and Random Walk above Quenched Random Wall. 2015. ⟨hal-01322463v1⟩
236 Consultations
257 Téléchargements

Partager

More