Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms

Résumé

We give upper bounds on the principal curvatures of a maximal surface of nonpositive curvature in three-dimensional Anti-de Sitter space, which only depend on the width of the convex hull of the surface. Moreover, given a quasisymmetric homeo-morphism φ, we study the relation between the width of the convex hull of the graph of φ, as a curve in the boundary of infinity of Anti-de Sitter space, and the cross-ratio norm of φ. As an application, we prove that if φ is a quasisymmetric homeomorphism of RP^1 with cross-ratio norm ||φ||, then ln K ≤ C||φ||, where K is the maximal dilatation of the minimal Lagrangian extension of φ to the hyperbolic plane.
Fichier principal
Vignette du fichier
1603.00628-2.pdf (682.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01300369 , version 1 (10-04-2016)
hal-01300369 , version 2 (04-01-2018)
hal-01300369 , version 3 (12-11-2020)

Identifiants

  • HAL Id : hal-01300369 , version 1

Citer

Andrea Seppi. Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms. 2016. ⟨hal-01300369v1⟩
85 Consultations
1213 Téléchargements

Partager

More