Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2019

Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms

Andrea Seppi

Résumé

We give upper bounds on the principal curvatures of a maximal surface of nonpositive curvature in three-dimensional Anti-de Sitter space, which only depend on the width of the convex hull of the surface. Moreover, given a quasisymmetric homeo-morphism φ, we study the relation between the width of the convex hull of the graph of φ, as a curve in the boundary of infinity of Anti-de Sitter space, and the cross-ratio norm of φ. As an application, we prove that if φ is a quasisymmetric homeomorphism of RP^1 with cross-ratio norm ||φ||, then ln K ≤ C||φ||, where K is the maximal dilatation of the minimal Lagrangian extension of φ to the hyperbolic plane.
Fichier principal
Vignette du fichier
JEMS_arxiv.pdf (699.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01300369 , version 1 (10-04-2016)
hal-01300369 , version 2 (04-01-2018)
hal-01300369 , version 3 (12-11-2020)

Identifiants

Citer

Andrea Seppi. Maximal surfaces in anti-de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms. Journal of the European Mathematical Society, 2019, 21 (6), pp.1855-1913. ⟨10.4171/JEMS/875⟩. ⟨hal-01300369v3⟩
85 Consultations
1213 Téléchargements

Altmetric

Partager

More