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MAXIMAL SURFACES IN ANTI-DE SITTER SPACE, WIDTH OF

CONVEX HULLS AND QUASICONFORMAL EXTENSIONS OF

QUASISYMMETRIC HOMEOMORPHISMS

ANDREA SEPPI

Abstract. We give upper bounds on the principal curvatures of a maximal surface of
nonpositive curvature in three-dimensional Anti-de Sitter space, which only depend on
the width of the convex hull of the surface. Moreover, given a quasisymmetric homeo-
morphism φ, we study the relation between the width of the convex hull of the graph
of φ, as a curve in the boundary of infinity of Anti-de Sitter space, and the cross-ratio
norm of φ.

As an application, we prove that if φ is a quasisymmetric homeomorphism of RP1

with cross-ratio norm ||φ||, then lnK ≤ C||φ||, where K is the maximal dilatation of the
minimal Lagrangian extension of φ to the hyperbolic plane.

Introduction

The study of three-dimensional Anti-de Sitter space AdS3 was initiated by the pioneering
work of Mess ([Mes07]) of 1990, and has been widely developed since then, with emphasis
on its relation with Teichmüller theory, for instance in [AAW00, ABB+07, BBZ07, BS10,
BKS11, BS12, KS07].

In particular, in [BS10] Bonsante and Schlenker studied zero mean curvature spacelike
surfaces - hereafter maximal surfaces - with boundary contained in the boundary at infin-
ity ∂∞AdS3. The latter is identified in a natural way to RP1 × RP1, where isometries of
AdS3 extend to projective transformations which act as elements of PSL(2,R)×PSL(2,R).
Therefore the asymptotic boundary of a maximal surface is represented by the graph of an
orientation-preserving homeomorphism φ : RP1 → RP1. Bonsante and Schlenker proved
that every curve in ∂∞AdS3 corresponding to the graph of an orientation-preserving homeo-
morphism φ : RP1 → RP1 bounds a maximal disc S with nonpositive curvature. This result
might be thought of as an asymptotic Plateau problem in Anti-de Sitter geometry. By the
Gauss equation in AdS3, nonpositivity of curvature is equivalent to the condition that the
principal curvatures of S are in [−1, 1].

The existence theorem of Bonsante and Schlenker was refined under the assumption that
φ is a quasisymmetric homeomorphism of RP1 - namely, if the cross-ratio norm

||φ||cr = sup
cr(Q)=−1

|ln |cr(φ(Q))||

is finite. In this case, the maximal disc is unique and the principal curvatures are in
[−1 + ǫ, 1 − ǫ] for some ǫ. By means of a construction which associates to a maximal
surface with nonpositive curvature a minimal Lagrangian diffeomorphism from H2 to H2

(a diffeomorphism of H2 is minimal Lagrangian if it is area-preserving and its graph is a
minimal surface in H2×H2), the existence and uniqueness theorems on maximal surfaces led
to the proof of the fact that every quasisymmetric homeomorphism of RP1 admits a unique
quasiconformal minimal Lagrangian extension to H2.

Another important ingredient introduced in [BS10] is the width of the convex hull. This
is defined as the supremum of the length of timelike paths contained in the convex hull of
the curve gr(φ). By a simple application of the maximum principle, the maximal surface
S with ∂∞S = gr(φ) is itself contained in the convex hull. Bonsante and Schlenker proved
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that for every orientation-preserving homeomorphism φ, the width is at most π/2, and it is
strictly less than π/2 precisely when φ is quasisymmetric.

The purpose of this paper is to study the quantitative relations between the cross-ratio
norm of φ, the width w of its convex hull, and the supremum ||λ||∞ of the principal curvatures
of the maximal surface S of nonpositive curvature such that ∂∞S = gr(φ). By the above
discussion, ||φ||cr < +∞ if and only if w < π/2 if and only if ||λ||∞ < 1, but it is not clear
whether there is a direct relation between these quantities. Using a formula proved in [KS07]
which relates the differential of the minimal Lagrangian extension to the shape operator of S,
our results will provide estimates on the maximal dilatation of the quasiconformal minimal
Lagrangian extension, only depending on the cross-ratio norm of φ.

Principal curvatures of maximal surfaces. The study of the relation between the prin-
cipal curvatures of a maximal surface and the width of the convex hull is split into two
parts. Observe that the principal curvatures of S vanish identically when S is a totally
geodesic plane, in which case the width is zero since the convex hull consists of S itself. Our
first theorem describes the behavior of maximal surfaces which are close to being a totally
geodesic plane:

Theorem 1.A. There exists a constant C1 such that, for every maximal surface S with
||λ||∞ < 1 and width w,

||λ||∞ ≤ C1 tanw .

This theorem provides interesting information only when w is in some neighborhood of
zero, since for large w the already know bound ||λ||∞ < 1 is not improved. On the other
hand, Bonsante and Schlenker showed that if a maximal surface of nonpositive curvature
has a point where the principal curvatures are −1 and 1, then the principal curvatures are
−1 and 1 everywhere, and therefore the induced metric is flat. Moreover, the surface is
a so-called horospherical surface, which is described explicitly and has width is π/2. Our
second theorem concerns surfaces which are close to this situation:

Theorem 1.B. There exist universal constants M > 0 and δ ∈ (0, 1) such that, if S is a
maximal surface in AdS3 with δ ≤ ||λ||∞ < 1 and width w, then

tanw ≥
(

1

1− ||λ||∞

)1/M

.

It is worth remarking here that an inequality going in the opposite direction can be
obtained more easily, and all the necessary tools were already proved in [KS07] and [BS10].
Nevertheless, for the sake of completeness we will provide a proof of the following:

Proposition 1.C. Let S be a maximal surface in AdS3 with ||λ||∞ ≤ 1 and width w. Then

tanw ≤ 2||λ||∞
1− ||λ||2∞

.

Since 2||λ||∞/(1− ||λ||2∞) behaves like 2||λ||∞ as ||λ||∞ → 0, one sees that Theorem 1.A
is optimal for small ||λ||∞, up to determining the best possible value of the constant C1.
On the other hand, from Proposition 1.C one obtains that tanw ≤ 2/(1 − ||λ||∞), and it
remains an open question whether Theorem 1.B can be improved to an inequality of the
form tanw ≥ C−1

2 (1− ||λ||∞)−1.

Minimal Lagrangian extensions. A classical problem in Teichmüller theory concerns
quasiconformal extensions to the disc of quasisymmetic homeomorphisms of the circle. Clas-
sical quasiconformal extensions include, for instance, the Beurling-Ahlfors extension and the
Douady-Earle extension. More recently, Markovic [Mar15] proved the existence of quasicon-
formal harmonic extensions, where the harmonicity is referred to the complete hyperbolic
metric of H2.
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Moreover, the maximal dilatation of the classical extensions has been widely studied.
For instance, Beurling and Ahlfors in [BA56] proved that, if ΦBA is the Beurling-Ahlfors
extension of a quasisymmetric homeomorphism φ, then the maximal dilatation K(ΦBA)
satisfies:

lnK(ΦBA) ≤ 2||φ||cr .
The asymptotic behaviour was later improved in [Leh83] by

lnK(ΦBA) ≤ ||φ||cr + ln 2 .

For the Douady-Earle extension, [DE86] proved that there exist constants δ and C such that,
for every quasisymmetric homeomorphism of the circle φ with ||φ||cr < δ, the Douady-Earle
extension ΦDE satisfies:

lnK(ΦDE) ≤ C||φ||cr .
More recently, Hu and Muzician proved in [HM12] that the following always holds:

lnK(ΦDE) ≤ C1||φ||cr + C2 .

In this paper we will prove analogous results for the minimal Lagrangian extension, whose
existence was proved in [BS10] as already remarked. As an application of Theorem 1.A, we
will prove the following inequality:

Theorem 2.A. There exist universal constants δ and C1 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian
extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C1||φ||cr .

On the other hand, by an application of Theorem 1.B we will derive an asymptotic
estimate of the maximal dilatation of ΦML:

Theorem 2.B. There exist universal constants ∆ and C2 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr > ∆, the minimal Lagrangian
extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C2||φ||cr .

Using Proposition 1.C we also obtain an inequality in the converse direction, which holds
for quasisymmetric homeomorphisms with small cross-ratio norm and shows that Theorem
2.A is not improvable from a qualitative point of view.

Theorem 2.C. There exist universal constants δ and C0 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian
extension Φ : H2 → H2 has maximal dilatation bounded by:

C0||φ||cr ≤ lnK(ΦML) .

The constant C0 can be taken arbitrarily close to 1/2.

Finally, from Theorem 2.A and Theorem 2.B we will derive the following corollary.

Corollary 2.D. There exists a universal constant C such that, for any quasisymmetric
homeomorphism φ of RP1, the minimal Lagrangian extension ΦML : H2 → H2 has maximal
dilatation K(ΦML) bounded by:

lnK(ΦML) ≤ C||φ||cr .

Corollary 2.D is therefore a result for minimal Lagrangian extensions comparable to what
has been proved for Beurling-Ahlfors and Douary-Earle extensions.
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From the width to the cross-ratio norm. The bridge from Theorem 1.A to Theorem
2.A, and from Theorem 1.B to Theorem 2.B, is twofold. The first aspect is a direct relation
between the principal curvatures of a maximal surface S and the quasiconformal dilatation of
the minimal Lagrangian extension at the corresponding point. This is proved in Proposition
5.5 by using a formula of [KS07], and has as a consequence that:

K(ΦML) =

(

1 + ||λ||∞
1− ||λ||∞

)2

.

On the other hand, the step from the width to the cross-ratio norm is more subtle. This
is the content of the following proposition:

Proposition 3.A. Given any quasisymmetric homeomorphism φ of RP1, let w be the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

tanw ≤ sinh

( ||φ||cr
2

)

.

By means of these two relations and some computation, Theorem 2.A and Theorem 2.B
are proved on the base of Theorem 1.A and Theorem 1.B.

To prove Proposition 3.A, assuming that the width is w, we will essentially find two
support planes P− and P+ for the convex hull of gr(φ), on the two different sides of the
convex hull, such that P− and P+ are connected by a timelike geodesic segment of length
w. We will use the fact that the boundaries of the convex hull are pleated surfaces in order
to pick four points in ∂∞AdS3 - two in the boundary at infinity ∂∞P− and the other two in
∂∞P+ - and use such four points to show that the cross-ratio norm of φ is large. Turning
this qualitative picture into quantitative estimates, leading to the proof of Proposition 3.A,
involves careful and somehow technical constructions in Anti-de Sitter space.

By using similar techniques, we will also prove an inequality in the converse direction,
namely

Proposition 3.B. Given any quasisymmetric homeomorphism φ of RP1, let w the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

tanh

( ||φ||cr
4

)

≤ tanw .

This inequality, however, is clearly not optimal, as the hyperbolic tangent tends to 1 as
||φ||cr tends to infinity. Hence the inequality is interesting only for w < π/4. Nevertheless,
this inequality is used to obtain Theorem 2.C from Proposition 1.C. To prove Proposition
3.B, we will assume the cross-ratio norm is ||φ||cr and - composing with Möbius transforma-
tions in an appropriate way - construct a quadruple points in ∂∞AdS3. Then we consider
two spacelike lines connecting two pairs of points at infinity chosen in the above quadruple.
By construction, those two lines are contained in the convex hull of gr(φ), hence the max-
imal length of a timelike geodesic segment between them provides a bound from below on
the width.

Outline of the main proofs. Let us now give an outline of some technicalities involved
in the proofs of Theorem 1.A and Theorem 1.B.

The starting point behind the proof of Theorem 1.A is the fact that a maximal surface S
with ∂∞S = gr(φ) in ∂∞AdS3 is contained in the convex hull of gr(φ). Using this fact, for
every point x ∈ S we find two timelike geodesic segments starting from x and orthogonal to
two planes P−,P+ which do not intersect the convex hull of gr(φ). The sum of the lengths of
the two segments is less than the width w. Moreover S is contained in the region bounded
by P− and P+.

Now the key step is to show that, heuristically, if S is contained in the region between two
disjoint planes which are close to x, then the principal curvatures of S in a neighborhood of x
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cannot be too large. To make this statement precise, we will apply Schauder-type estimates
to the linear equation

(L) ∆Su− 2u = 0 ,

where u : S → R is the function which measures the sine of the (signed, timelike) distance
from the plane P−, and ∆S is the Laplace-Beltrami operator of S (negative definite as an
operator on L2). Observe that an easy application of the maximum principle to Equation
(L) proves that a maximal surface is necessarily contained in the convex hull. A more subtle
study of a priori bounds for this equation provides the key step for Theorem 1.A.

A technical point is that the operator ∆S − 2id depends on the maximal surface, which
will be overcame by using the uniform boundedness of the coefficients, written in normal
coordinates, for a class of surfaces we are interested in. The precise statement we will use is
the following:

Proposition 4.A. There exists a radius R > 0 and a constant C > 0 such that for every
choice of:

• A maximal surface S of nonpositive curvature in AdS3 with ∂∞S the graph of an
orientation-preserving homeomorphism;

• A point x ∈ S;
• A plane P− disjoint from S with dAdS3(x, P−) ≤ π/4,

the function u(z) = sindAdS3(expx(z), P−) satisfies the Schauder-type inequality

||u||C2(B(0,R
2
)) ≤ C||u||C0(B(0,R)) .

The techniques involved here are similar to those used, in the case of minimal surfaces in
three-dimensional hyperbolic geometry, in [Sep14].

To conclude, we then use an explicit expression for the shape operator of the maximal
surface S in terms of the value of u, the first derivatives of u, and the second derivatives
of u. Hence, using Proposition 4.A, the principal curvatures are bounded in terms of the
supremum of u on a geodesic ball BS(x,R). The latter can be estimated in terms of the
width w. However, in this last step is it necessary to control the size of the image of BS(x,R)
under the projection to the plane P−. To achieve this, a uniform gradient lemma is proved,
to show that the maximal surface S is not too “tilted” with respect to P−.

Similarly, the key analytical point for the proof of Theorem 1.B comes from an a priori
estimate. Consider the function χ : S → [0,+∞) defined by χ = − lnλ, where λ is the
positive principal curvature of S. It turns out that χ satisfies the equation

(Q) ∆Sχ = 2(1− e−2χ) .

By an application of the maximum principle, one can prove that if maximal surface of
nonpositive curvature has principal curvatures −1 and 1 at some point, than the principal
curvatures are identically −1 and 1. By a careful analysis of Equation (Q), we will prove a
more quantitative result, which roughly speaking shows that if the principal curvatures are
“large” (i.e. close to 1) at some point, then they remain “large” on a “large” ball.

Proposition 4.B. There exists a universal constantM such that, for every maximal surface
S of nonpositive curvature in AdS3 and every pair of points p, q ∈ S,

1− λ(q) ≤ eMdS(p,q)(1− λ(p)) .

The proof of Proposition 4.B is based on some estimates already proved jointly by Francesco
Bonsante, Jean-Marc Schlenker and Mike Wolf in an unpublished work. The proof presented
in this paper closely follows their arguments, which I was kindly transmitted and authorized
to adapt to the purpose of this paper.

The strategy to prove Theorem 1.B is then the following. Assume there exists a point x0
with λ(x0) = 1− e−v(x0) very close to 1. We want to show that the width w is very close to
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π/2. We will first show that the line of curvature of S corresponding to the positive eigenvalue
of S remains, for a certain amount of time, in the concave side of an umbilical surface Uλ1

tangent to S at x0, whose principal curvatures are both equal to λ1 = 1 − e−v(x0)/4. Such
amount of time is finite (in a unit-speed parameterization of the line of curvature), but it
can be arranged to tend to infinity as λ(x0) tends to 1. This step is basically a maximum
principle argument, but requires a technical point to show that the intrinsic acceleration of
the line of curvature is also small, i.e. comparable to e−v(x0).

The surface Uλ1
is obtained as the surface at constant timelike distance d1 from a totally

geodesic plane. As λ1 tends to 1, d1 tends to π/4. By following the line of curvature
corresponding to the positive eigenvalue, in the two opposite directions from x0, for a time
as indicated in the above paragraph, we obtain two points p1 and p2. Moreover p1 and p2
converge to ∂∞AdS3 as λ(x0) → 1. Of course analogous statements hold for the two points
q1, q2 obtained by following the line of curvature from x0 corresponding to the negative
eigenvalue.

After proving quantitative versions of the above statements, we can give a lower bound
for the length of the timelike geodesic segment r1r2 which maximizes the distance between
the geodesic segments p1p2 and q1q2. Since p1p2 and q1q2 are contained in the convex hull of
S, also r1r2 is contained in the convex hull, and therefore the lower bound on the length of
r1r2 provides a lower bound for the width w, which only depends on v(x0) = − ln(1−λ(x0)).
The reason why the obtained estimate is efficient when λ(x0) approaches 1 is that, in the
limit configuration, the lines p1p2 and q1q2 tend to be in dual position: equivalently, in
the limit every point of the first line is connected to every point of the second line by a
geodesic timelike segment of length π/2. Thus as λ(x0) → 1, the surface S is approaching a
horospherical surface in a well-quantified fashion.

Organization of the paper. In Section 1, we introduce the necessary notions on Anti-de
Sitter space, maximal surfaces and the width, we collect several results proved in [BS10],
and finally we give some generalities on quasisymmetric homeomorphisms. In Section 2 we
discuss the relation between the cross-ratio norm and the width in Anti-de Sitter space. The
main result is Proposition 3.A. Section 3 proves Theorem 1.A, while Section 4 is devoted to
the proof of Theorem 1.B. Finally in Section 5 we introduce quasiconformal mappings and
minimal Lagrangian extensions, and we prove Theorem 2.A, Theorem 2.B, Proposition 2.C
and Corollary 2.D.

Acknowledgements. I am very grateful to Francesco Bonsante, Jean-Marc Schlenker and
Mike Wolf for their interest in this work since my first stay at the University of Luxembourg
in Spring 2014, for many discussions and advices, and particularly for suggesting (and per-
mitting) that I use in the proof of Proposition 4.B some crucial estimates arisen from a
former collaboration of theirs.

Moreover, I would like to thank Dragomir Šarić and Jun Hu for replying to ad-hoc ques-
tions about Teichmüller theory in several occasions.

1. Anti-de Sitter space and maximal surfaces

Anti-de Sitter space AdS3 is a pseudo-Riemannian manifold of signature (2, 1) of constant
curvature -1. Consider R2,2, the vector space R4 endowed with the bilinear form of signature
(2,2):

〈x, y〉 = x1y1 + x2y2 − x3y3 − x4y4

and define
ÂdS3 =

{

x ∈ R2,2 : 〈x, x〉 = −1
}

.

It turns out that ÂdS3 is connected, time-orientable and has the topology of a solid torus.
We define Anti-de Sitter space to be the projective domain

AdS3 = P({〈x, x〉 < 0}) ⊂ RP3 ,
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of which ÂdS3 is a double cover. The pseudo-Riemannian metric induced on ÂdS3 descends
to a metric on AdS3 of constant curvature -1, again time-orientable, which will be denoted
again by the product 〈·, ·〉.

The tangent space of ÂdS3 at a point x is TxÂdS3 ∼= x⊥. Vectors in tangent spaces are
classified according to their causal properties. In particular:

v ∈ TxR
2,1 is











timelike if 〈v, v〉 < 0

lightlike if 〈v, v〉 = 0

spacelike if 〈v, v〉 > 0

.

Hence, given a spacelike curve γ : I → AdS3 (i.e. a differentiable curve whose tangent vector
at every point is spacelike), we define the length of γ as

length(γ) =

∫

I

√

〈γ̇(t), γ̇(t)〉dt .

On the other hand, if γ is a timelike curve, we still define its length, as

length(γ) =

∫

I

√

−〈γ̇(t), γ̇(t)〉dt .

We will fix once and forever a time orientation, so as to talk about future-directed vectors
and curves. Our convention is that the vector (0, 0, 0, 1) (based at the point (0, 0, 1, 0)) is
future-directed.

The group of isometries of ÂdS3 which preserve the orientation and the time-orientation is
SO+(2, 2), namely the connected component of the identity in the group of linear isometries
of R2,2. It follows that the group of orientation-preserving, time-preserving isometries of
AdS3 is SO+(2, 2)/ {±I}, and will be denoted simply by Isom(AdS3).

Geodesics of ÂdS3 are the intersection of ÂdS3 with linear planes of R2,2. Therefore,
geodesics of AdS3 are projective lines which intersect the projective domain AdS3 ⊂ RP3.
It is easy to see that a unit speed parameterization of a spacelike geodesic with initial point
p and initial tangent (spacelike) vector v is:

(1) γ(t) = [cosh(t)p+ sinh(t)v] ,

where the square brackets denote the class in AdS3 of a point of ÂdS3. On the other hand,
when v is a timelike vector, the parameterization of the timelike geodesic is

(2) γ(t) = [cos(t)p+ sin(t)v] .

Hence timelike geodesics are closed and have length π. Equations (1) and (2) enable to
derive immediately the formulae for the length of a spacelike geodesic segment:

(3) cosh(length(pq)) = |〈p, q〉| ,

while for a timelike geodesic segment one gets:

(4) cos(length(pq)) = |〈p, q〉| ,

Analogously, totally geodesic planes of AdS3 are projective planes and are the projection of

the intersection of ÂdS3 with three-dimensional linear subspaces of R2,2. There is a duality
between totally geodesic planes and points of AdS3, which is given by associating to a point
x ∈ AdS3 the dual plane P = x⊥. One defines

P = x⊥ is











timelike if 〈x, x〉 > 0 (⇔ the induced metric is Lorentzian)

lightlike if 〈x, x〉 = 0 (⇔ the induced metric is degenerate)

spacelike if 〈x, x〉 < 0 (⇔ the induced metric is Riemannian)

.
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Spacelike totally geodesic planes are isometric to the hyperbolic plane H2. Using Equation
(4), it is easy to check that the dual plane of a point x coincides with

x⊥ = {γ(π/2)|γ : [0, π] → AdS3 is a timelike geodesic , γ(0) = γ(π) = x}.

In the affine chart {x4 6= 0}, AdS3 fills the domain
{

x2 + y2 < 1 + z2
}

, interior of a one-

sheeted hyperboloid; however AdS3 is not contained in a single affine chart, hence in this
description we are missing a totally geodesic plane at infinity P∞, which is the dual plane
of the origin. Since geodesics in AdS3 are intersections of AdS3 with linear planes in R2,2,
in the affine chart geodesics are represented by straight lines. See Figure 1.1 for a picture
in the affine chart {x4 6= 0}.

P

Figure 1.1. The light-
cone of future null geodesic
rays from a point and a
totally geodesic spacelike
plane P .

ξ

πr(ξ)

πl(ξ)

Figure 1.2. Left and
right projection from a
point ξ ∈ ∂∞AdS3 to the
plane P = {x3 = 0}

The boundary at infinity of AdS3 is defined as the topological frontier of AdS3 in RP3,
namely the doubly ruled quadric

∂∞AdS3 = P({〈x, x〉 = 0}) .

It is naturally endowed with a conformal Lorentzian structure, for which the null lines are
precisely the left and right ruling. Given a spacelike plane P , which we recall is obtained as
intersection of AdS3 with a linear hyperplane of RP3 and is a copy of H2, P has a natural
boundary at infinity ∂∞(P ) which coincides with the usual boundary at infinity of H2.
Moreover, P intersects each line in the left or right ruling in exactly one point. If a spacelike
plane P is chosen, ∂∞AdS3 can be identified with ∂∞H2 × ∂∞H2 by means of the following
description: ξ ∈ ∂∞AdS3 corresponds to (πl(ξ), πr(ξ)), where πl and πr are the projection
to ∂∞(P ) following the left and right ruling respectively (compare Figure 1.2). Under this
identification, the isometry group of AdS3 acts on ∂∞AdS3 by projective transformations,
and it turns out that

Isom(AdS3) ∼= PSL(2,R)× PSL(2,R) .

Given an orientation-preserving homeomorphism φ : ∂∞H2 → ∂∞H2, by means of this
identification, the graph of φ can be thought of as a curve in ∂∞AdS3, denoted simply by
gr(φ).
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1.1. Maximal surfaces. This paper is concerned with spacelike embedded surfaces in Anti-
de Sitter space. A smooth embedded surface σ : S → AdS3 is called spacelike if the first
fundamental form I(v, w) = 〈dσ(v), dσ(w)〉 is a Riemannian metric on S. Equivalently, the
tangent plane is a spacelike plane at every point. Let N be a unit normal vector field to the
embedded surface S. We denote by ∇ and ∇S the ambient connection and the Levi-Civita
connection of the surface S, respectively. The second fundamental form of S is defined as

∇ṽw̃ = ∇S
ṽ w̃ + II(v, w)N

if ṽ and w̃ are vector fields extending v and w. The shape operator is the (1, 1)-tensor defined
as B(v) = ∇vN . It satisfies the property

II(v, w) = 〈B(v), w〉 .
Definition 1.1. A smooth embedded spacelike surface S in AdS3 is maximal if trB = 0.

The shape operator is symmetric with respect to the first fundamental form of the surface
S; hence the condition of maximality amounts to the fact that the principal curvatures
(namely, the eigenvalues of B) are opposite at every point.

Definition 1.2. We say that an embedded spacelike surface S in AdS3 is entire if it is a
compression disc, i.e. it is a topological disc and its frontier is contained in ∂∞AdS3.

The condition that S is entire is equivalent to the fact that S can be expressed as a graph
over H2 in a suitable coordinate system, see [BS10].

An existence result for maximal surfaces in AdS3 was given by Bonsante and Schlenker.

Theorem 1.3 ([BS10]). Given any orientation-preserving homeomorphism φ : RP1 → RP1,
there exists an entire maximal surface with nonpositive curvature S in AdS3 such that ∂∞S =
gr(φ).

Observe that, by the Gauss equation in AdS3, the curvature of the induced metric on
the maximal surface S is −1 + λ2, where λ and −λ are the principal curvatures. Hence the
condition of nonpositive curvature corresponds to the fact that the principal curvatures of
S are in [−1, 1].

1.2. Width of convex hulls. Since AdS3 is a projective geometry, we have a well-defined
notion of convexity. In particular, we can give the definition of convex hull of a curve in
∂∞AdS3.

Definition 1.4. Given a curve Γ = gr(φ) in ∂∞AdS3, the convex hull of Γ, which we denote
by CH(Γ), is the intersection of half-spaces bounded by planes P such that ∂∞P does not
intersect Γ, and the half-space is taken on the side of P containing Γ.

It can be proved that the convex hull of Γ, which is well-defined in RP3, is contained in
AdS3 ∪ ∂∞AdS3, and is actually contained in an affine chart.

Let us fix a totally geodesic spacelike plane Q (for instance, the plane {x4 = 0}, which
is the plane at infinity in Figure 1.1). We will denote by dAdS3(·, ·) the timelike distance in
AdS3 \Q, which is defined as follows.

Definition 1.5. Given points p and q which are connected by a timelike curve, the timelike
distance between p and q is

dAdS3(p, q) = sup
γ
{length(γ)|γ : [0, 1] → AdS3 \Q is a timelike curve, γ(0) = p, γ(1) = q} .

The distance between two such points p, q is achieved along the timelike geodesic con-
necting p and q. The timelike distance satisfies the reverse triangle inequality, meaning
that,

dAdS3(p, r) ≥ dAdS3(p, q) + dAdS3(q, r) ,
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provided both pairs (p, q) and (q, r) are connected by a timelike curve. In a completely
analogous way, we define the distance of a point x from a totally geodesic spacelike plane P
as the supremum of the length of a timelike curve connecting x to P .

We are now ready to introduce the notion of width of the convex hull, as defined in [BS10].

Definition 1.6. Given a curve Γ = gr(φ) in ∂∞AdS3, the width w of the convex hull CH(Γ)
is the supremum of the length of a timelike geodesic contained in CH(Γ).

Remark 1.7. Note that the distance dAdS3(p, q) is achieved along the geodesic timelike seg-
ment connecting p and q. Hence Definition 1.6 is equivalent to

(5) w = sup
p∈∂−C,q∈∂+C

dAdS3(p, q) ,

where C = CH(Γ) and ∂±C denote the two components (one future and one past component)
of the boundary of the convex hull of Γ in AdS3.

In particular, we note that

(6) w = sup
x∈C

(dAdS3(x, ∂−C) + dAdS3(x, ∂+C)) .

To stress once more the meaning of this equality, note that the supremum in (6) cannot be
achieved on a point x such that the two segments realizing the distance from x to ∂−C and
∂+C are not part of a unique geodesic line. Indeed, if at x the two segments form an angle,
the piecewise geodesic can be made longer by avoiding the point x, as in Figure 1.3. We also
remark that if the distance between a point x and ∂±C is achieved along a geodesic segment
l, then the maximality condition imposes that l must be orthogonal to a support plane to
∂±C at ∂±C ∩ l.

x

Figure 1.3. A path through x which is not geodesic does not achieve the maxi-
mum distance.

1.3. An application of the maximum principle. A key property used in this paper is
that maximal surfaces with boundary at infinity a curve Γ = gr(φ) are contained in the
convex hull of Γ. Although this fact is known, we prove it here by applying maximum
principle to a simple linear PDE describing maximal surfaces.

Hereafter Hess u denotes the Hessian of a smooth function u on the surface S, i.e. the
(1,1) tensor

Hessu(v) = ∇S
v gradu .

Finally, ∆S denotes the Laplace-Beltrami operator of S, which can be defined as

∆Su = tr(Hess u) .

Proposition 1.8 was proved in [BS10]. We give a proof here for the sake of completeness.
We first observe that, given a point x and a totally geodesic spacelike plane P , it is easy to
check (as for Equations (3) and (4)) that the timelike distance dAdS3(x, P ) of x from P = p⊥

satisfies

sin dAdS3(x, P ) = |〈x, p〉| .
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Proposition 1.8. Given a maximal surface S ⊂ AdS3 and a plane P , let u : S → R be the
function u(x) = sin dAdS3(x, P ), where dAdS3(x, P ) is considered as a signed distance. Let N
be the future unit normal to S and B = ∇N the shape operator. Then

(7) Hess u− uE =
√

1− u2 + || gradu||2B

as a consequence, u satisfies the linear equation

(L) ∆Su− 2u = 0 .

Proof. Let us assume that P is the plane dual to the point p ∈ AdS3. We will perform the

computation in the double cover ÂdS3. Then u is the restriction to S of the function U
defined by:

(8) U(x) = sin dAdS3(x, P ) = 〈x, p〉 .

Let N be the unit normal vector field to S; we compute gradu by projecting the gradient
∇U of U to the tangent plane to S:

∇U = p+ 〈p, x〉x(9)

gradu(x) = p+ 〈p, x〉x + 〈p,N〉N(10)

Now Hess u(v) = ∇S
v gradu, where ∇S is the Levi-Civita connection of S, namely the

projection of the flat connection of R2,2, and so for any v ∈ TxÂdS3 one gets:

Hess u(v) = 〈p, x〉v + 〈p,N〉∇S
vN = u(x)v + 〈∇U,N〉B(v) .

Moreover, ∇U = gradu+ 〈∇U,N〉N and thus

(11) 〈∇U,N〉2 = || gradu||2 − 〈∇U,∇U〉 = 1− u2 + || gradu||2 ,

which proves (7). By taking the trace, (L) follows. �

Corollary 1.9. Let S be an entire maximal surface in AdS3. Then S is contained in the
convex hull of ∂∞S.

Proof. If Γ = ∂∞S is a circle, then S is a totally geodesic plane which coincides with the
convex hull of Γ. Hence we can suppose Γ is not a circle. Consider a plane P− which does not
intersect Γ and the function u defined as in Equation (8) in Proposition 1.8, with respect
to P−. Suppose their mutual position is such that u ≥ 0 in the region of S close to the
boundary at infinity (i.e. in the complement of a large compact set). If there exists some
point where u < 0, then by Equation (L) at a minimum point ∆Su = 2u < 0, which gives
a contradiction. The proof is analogous for a plane P+ on the other side of Γ, by switching
the signs. This shows that every convex set containing Γ contains also S. �

1.4. Two opposite examples. We report here the two examples to have in mind for our
study of maximal surface. The first is a very simple example, namely a totally geodesic
plane, for which the principal curvatures vanish at every point. To some extent, the second
example can be considered as the opposite of a totally geodesic plane, since in the second
case the principal curvatures are 1 and −1 at every point.

Example 1.10. (Totally geodesic planes) By definition, a totally geodesic plane P has shape
operator B ≡ 0. Hence a totally geodesic plane is a maximal surface, and ∂∞P = gr(A),
where A ∈ PSL(2,R) is the trace on RP1 = ∂∞H2 of an isometry of H2. Hence the width
of the convex hull vanishes. It is also easy to see that, given a curve in ∂∞AdS3, if w = 0
then the curve is necessarily the boundary of a totally geodesic plane. Therefore the unique
maximal surface with zero width (up to isometries of AdS3) is a totally geodesic plane.



12 ANDREA SEPPI

Example 1.11. (Horospherical surfaces) Consider a spacelike line l in AdS3. The dual line
l⊥ is obtained as the intersection of all totally geodesic planes dual to points of l. Recall
that timelike geodesics in AdS3 are closed and have length π. Hence one equivalently has:

l⊥ = {γ(π/2)|γ : [0, π] → AdS3 is a timelike geodesic , γ(0) = γ(π) ∈ l} .
Let us define the smooth surface

H = {γ(π/4)|γ : [0, π/2] → AdS3 is a future-directed timelike geodesic, γ(0) ∈ l, γ(π/2) ∈ l⊥} .
See Figure 1.4 for a schematic picture.
The group of isometries which preserve l (and thus preserves also l⊥) is isomorphic to

R × R, where R × {0} fixes l pointwise and acts on l⊥ by translation (it actually acts as a
rotation around the spacelike line l), while {0}×R does the opposite. The induced metric on
H is flat, and thus H is isometric to the Euclidean plane. Moreover, for every point x ∈ H ,
the surface H has an orientation-reversing, time-reversing isometry obtained by reflection in
a plane P tangent to a point x ∈ H , followed by rotation of angle π/2 around the timelike
geodesic orthogonal to P at x. This basically shows that the principal curvatures λ1, λ2 of
H are necessarily opposite to one another, hence H is a maximal surface. Moreover, since
by the Gauss equation

0 = KH = −1− λ1λ2 = −1 + λ2 ,

it follows that the principal curvatures are necessarily ±1 at every point. Finally, by con-
struction, the width of the convex hull of H is precisely π/2.

l

l
⊥

l

l
⊥

Figure 1.4. A subset of a horospherical surface. The lines of curvature provide
Euclidean coordinates for the induced metric, and are planar curves parallel to l

or l⊥. The boundary at infinity is composed of four lightlike segments.

Bonsante and Schlenker proved an important property of rigidity of maximal surfaces
with large principal curvatures.

Lemma 1.12 ([BS10, Lemma 5.5]). Given a maximal surface S in AdS3 with nonpositive
curvature, if the curvature is 0 at some point, then S is a subset of a horospherical surface.

The proof of Lemma 1.12 follows from applying the maximum principle to the following
equation.
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Lemma 1.13 ([KS07, Lemma 3.11]). Given a maximal surface S in AdS3, with principal
curvatures ±λ, let χ : S → R be the function defined (in the complement of umbilical points)
by χ = − ln |λ|. Then χ satisfies the quasi-linear equation

(Q) ∆Sχ = 2(1− e−2χ) .

1.5. Uniformly negative curvature. As a warm-up for what will come next, we give here
a proof of Proposition 1.C. Our proof was basically already implicit in [BS10, Claim 3.21],
and will be a consequence of the following easy lemma, which we prove here by completeness.
See also [KS07].

Lemma 1.14. Given a smooth spacelike surface S in AdS3, let Sρ be the surface at timelike
distance ρ from S, obtained by following the normal flow. Then the pull-back to S of the
induced metric on the surface Sρ is given by

(12) Iρ = I((cos(ρ)E + sin(ρ)B)·, (cos(ρ)E + sin(ρ)B)·) .
The second fundamental form and the shape operator of Sρ are given by

IIρ = I((− sin(ρ)E + cos(ρ)B)·, (cos(ρ)E − sin(ρ)B)·) ,(13)

Bρ = (cos(ρ)E + sin(ρ)B)−1(− sin(ρ)E + cos(ρ)B) .(14)

Proof. Let σ be a smooth embedding of the maximal surface S, with oriented unit normal
N . The geodesics orthogonal to S at a point x = σ(y) can be written as

γx(ρ) = cos(ρ)σ(y) + sin(ρ)N(x) .

Then we compute

Iρ(v, w) =〈dγx(ρ)(v), dγx(ρ)(w)〉
=〈cos(ρ)dσx(v) + sin(ρ)d(N ◦ σ)x(v), cos(r)dσx(w) + sin(ρ)d(N ◦ σ)x(w)〉
=I(cos(ρ)v + sin(ρ)B(v), cos(ρ)w + sin(ρ)B(w)) .

We have used the equation B = ∇N . The formula for the second fundamental form follows

from the fact that IIρ = 1
2
dIρ
dρ , and the formula for Bρ from equating Bρ = I−1

ρ IIρ. �

It follows that, if the principal curvatures of a maximal surface S are λ1 = λ ∈ [0, 1) and
λ2 = −λ, then the principal curvatures of Sρ are

λρ =
λ− tan(ρ)

1 + λ tan(ρ)
= tan(ρ0 − ρ) ,

where tan ρ0 = λ, and

λ′ρ =
−λ− tan(−ρ)
1− λ tan(ρ)

= tan(−ρ0 − ρ) .

In particular λρ and λ′ρ are non-singular for every ρ between −π/4 and π/4. It then turns
out that Sρ is convex at every point for ρ < −||ρ0||∞, and concave for ρ > ||ρ0||∞. This
proves that the width w is less than 2||ρ0||∞ = 2 arctan ||λ||∞. Therefore

tan
(ω

2

)

≤ ||λ||∞ ,

and the statement of Proposition 1.C follows.

Proposition 1.C. Let S be an entire maximal surface in AdS3 with ||λ||∞ < 1 and let w
be the width of the convex hull. Then

tanw ≤ 2||λ||∞
1− ||λ||2∞

.

A direct consequence is that, if S is an entire maximal surface with uniformly negative
curvature (equivalently, with ||λ||∞ < 1), then w < π/2, see also [BS10, Corollary 3.22].
Also the converse holds:
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Proposition 1.15 ([BS10]). Given any entire maximal surface S of nonpositive curvature
in AdS3, the width w of the convex hull of S is at most π/2. Moreover, w < π/2 if and only
if S has uniformly negative curvature.

The proof of the converse implication in [BS10] used quasisymmetric homemorphisms (see
below) and minimal Lagrangian extensions (which will be discussed in Section 5). Observe
that our Theorem 1.B gives a quantitative version of the converse implication of Proposition
1.15.

1.6. Quasisymmetric homeomorphisms of the circle. Given an orientation-preserving
homeomorphism φ : RP1 → RP1, we define the cross-ratio norm of φ as

||φ||cr = sup
cr(Q)=−1

|ln |cr(φ(Q))|| ,

where Q = (z1, z2, z3, z4) is any quadruple of points on RP1 and we use the following
definition of cross-ratio:

cr(z1, z2, z3, z4) =
(z4 − z1)(z3 − z2)

(z2 − z1)(z3 − z4)
.

According to this definition, a quadruple Q = (z1, z2, z3, z4) is symmetric (i.e. the hyperbolic
geodesics connecting z1 to z3 and z2 to z4 intersect orthogonally) if and only if cr(Q) = −1.

Observe that ||φ||cr ∈ [0,∞] and ||φ||cr = 0 if and only if φ is a projective transformation,
i.e. φ ∈ PSL(2,R). Indeed, by post-composing with a projective transformation, one can
assume that φ fixes three points of RP1, and then the conclusion is straightforward. A
homeomorphism is quasisymmetric when it has finite cross-ratio norm:

Definition 1.16. An orientation-preserving homeomorphism φ : RP1 → RP1 is quasisym-
metric if and only if ||φ||cr < +∞.

Quasisymmetric homeomorphisms arise naturally in the context of quasiconformal map-
pings and universal Teichmüller space, which is actually one of the main themes of this
paper. However, we defer the introduction of this point of view to Section 5, where some
applications are given.

The first intimate correlation between the cross-ratio norm of a quasisymmetric homeo-
morphism φ and the width of the convex hull of gr(φ) was proved in [BS10]:

Theorem 1.17 ([BS10, Theorem 1.12]). Given any orientation-preserving homeomorphism
φ : RP1 → RP1, let w be the width of the convex hull of gr(φ). Then w < π/2 if and only if
φ is quasisymmetric.

Again, Proposition 3.A will provide a more precise version of Theorem 1.17, giving a
quantitative inequality between the width and the cross-ratio norm.

Remark 1.18. Actually, Theorem 1.17 holds under a more general hypothesis, namely for
more general curves in ∂∞AdS3, which, roughly speaking, may also contain lightlike seg-
ments. We will not be interested in these objects in this paper.

A refinement of Theorem 1.3 was given in [BS10] under the assumption that the curve at
infinity is the graph of a quasisymmetric homeomorphism.

Theorem 1.19 ([BS10]). Given any quasisymmetric homeomorphism φ : RP1 → RP1,
there exists a unique entire maximal surface S in AdS3 with uniformly negative curvature
such that ∂∞S = gr(φ).
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1.7. Compactness properties. One of the main tools used in [BS10] is a result of com-
pactness for maximal surfaces in AdS3. To conclude the preliminaries of this paper, we
briefly discuss some properties of compactness for maximal surfaces and quasisymmetric
homeomorphisms.

Given a spacelike plane P0 in AdS3 and a point x0 ∈ P0, let l be the timelike geodesic
through x0 orthogonal to P0. We define the cylinder Cl(x0, P0, R0) of radius R0 above P0

centered at x0 as the set of points x ∈ AdS3 which lie on a spacelike plane Px orthogonal to
l such that dPx

(x, l ∩ Px) ≤ R0. See also Figure 1.5.

x0

P0

Px

l

x R0

P0

x0

Figure 1.5. The definition of the cylinder Cl(x0, P0, R0). On the right, its in-
tersection with the future and past lightcone over x0.

The cylinder Cl(x0, P0, R0) can also be conveniently described in the following way. As-

suming (in the double cover ÂdS3, for one moment) that x0 = (0, 0, 1, 0) and the normal
vector to P0 is N0 = (0, 0, 0, 1), let us consider the following coordinate system:

(15) (r, θ, ζ) 7→ [cos θ sinh r, sin θ sinh r, cos ζ cosh r, sin ζ cosh r] ,

defined for r ∈ R, θ ∈ S1, ζ ∈ S1. This means that the level sets with ζ = c are totally
geodesic planes orthogonal to the timelike like

{[0, 0, cos ζ, sin ζ] : ζ ∈ S1} ,
which passes through the point x0 = (0, 0, 1, 0) with future-directed normal N0 = (0, 0, 0, 1).
It is easy to see that, by this description, the cylinder Cl(x0, P0, R0) is determined by the
relation r ≤ R0.

From the tools in the paper [BS10], the following lemma is proved:

Lemma 1.20. Given a spacelike plane P0 and a point x0 ∈ P0, every sequence Sn of entire
maximal surfaces with nonpositive curvature, tangent to P0 at x0, admits a subsequence
converging C∞ to an entire maximal surface on the cylinders Cl(x0, P0, R), for every R > 0.

A somehow similar property of compactness for quasisymmetric homeomorphisms will be
used in several occasions. See also [BZ06] for a discussion.

Theorem 1.21. Let k > 0 and φn : RP1 → RP1 be a family of orientation-preserving
quasisymmetric homeomorphisms of the circle, with ||φn||cr ≤ k. Then there exists a subse-
quence φnk

for which one of the following holds:

• The homeomorphisms φnk
converge uniformly to a quasisymmetric homeomorphism

φ : RP1 → RP1, with ||φ||cr ≤ k;
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• The homeomorphisms φnk
converge uniformly on the complement of any open neigh-

borhood of a point of RP1 to a constant map c : RP1 → RP1.

Remark 1.22. It is also not difficult to prove that, given a sequence of entire maximal surfaces
Sn which converges uniformly on compact cylinders Cl(x0, P0, R) to an entire maximal
surface S∞, then the asymptotic boundaries ∂∞Sn converge (in the Hausdorff convergence,
for instance) to the asymptotic boundary ∂∞S∞ of the limit surface.

2. Cross-ratio norm and the width of the convex hull

The purpose of this section is to investigate the relation between the width of the convex
hull of gr(φ) and the cross-ratio norm of φ when φ is a quasisymmetric homeomorphism.
The main result is thus Proposition 3.A. To some extent, Proposition 3.A is a quantitative
version of Theorem 1.17.

Proposition 3.A. Given any quasisymmetric homeomorphism φ of RP1, let w be the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

(16) tan(w) ≤ sinh

( ||φ||cr
2

)

.

Proof. To prove the upper bound on the width, suppose the width of the convex hull C of
gr(φ) is w ∈ (0, π/2). Let k = ||φ||cr. We can find a sequence of pairs (pn, qn) such that
dAdS3(pn, qn) ր w, with pn ∈ ∂−C, qn ∈ ∂+C. We can assume the geodesic connecting pn
and qn is orthogonal to ∂−C at pn; indeed one can replace pn with a point in ∂−C which
maximizes the distance from qn, if necessary (see Remark 1.7). Let us now apply isometries

Tn so that Tn(pn) = p = [p̂] ∈ AdS3, for p̂ = (0, 0, 1, 0) ∈ ÂdS3, and Tn(qn) lies on the
timelike geodesic through p orthogonal to P− = (0, 0, 0, 1)⊥.

The curve at infinity gr(φ) is mapped by Tn to a curve gr(φn), where φn is obtained by
pre-composing and post-composing φ with Möbius transformations (this is easily seen from
the description of Isom(AdS3) as PSL(2,R)× PSL(2,R)). Hence φn is still quasisymmetric
with norm ||φn||cr = ||φ||cr = k.

It is easy to see that φn cannot converge to a map sending the complement of a point
in RP1 to a single point of RP1. Indeed, the curves gr(φn) are all contained between P−

and a spacelike plane Pn disjoint from P−, which contains the point Tn(qn). Moreover the

P
−

gr(φn)

Pn

Tn(qn)

Figure 2.1. The curves gr(φn) are contained in a bounded region in an affine
chart, hence they cannot diverge to a constant map. This is easily seen, for
instance, by putting the plane P− at infinity and observing that the plane Pn has
to be spacelike, disjoint from P−, and to intersect the point Tn(qn) which is in
the lower half-plane.
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distance of p from Tn(qn) ∈ Pn is at most w. This shows that the curves gr(φn) all lie in a
bounded region in an affine chart of AdS3; this would not be the case if φn were converging
on the complement of one point to a constant map. See Figure 2.1.

Hence, by the convergence property of k-quasisymmetric homeomorphisms (Theorem
1.21), φn converges to a k-quasisymmetric homeomorphism φ∞, so that w equals the width
of the convex hull of gr(φ∞). Let us denote by C∞ the convex hull of gr(φ∞)).

p

q

P
−

P+

l

Figure 2.2. The setting
of the proof of Proposi-
tion 3.A.

P
−

P+

q

p

T+

T
−

Figure 2.3. The point p is
contained in the convex enve-
lope of three (or two) points in
∂∞(P−); analogously q in P+.

We will mostly refer to the coordinates in the affine chart {x3 6= 0}, namely (x, y, z) =
(x1/x3, x2/x3, x4/x3). Our assumption is that the point p has coordinates (0, 0, 0) and
P− = {(x, y, 0) : x2+y2 < 1} is the totally geodesic plane through p which is a support plane
for ∂−C∞. The geodesic line l through p orthogonal to P− is {(0, 0, z)}. By construction,
the width of C∞ equals dAdS3(p, q), where q = (0, 0, h) = l ∩ ∂+C∞. It is then an easy
computation to show that h = tanw. Hence the plane

P+ = {(x, y, h) : (x, y) ∈ R2, x2 + y2 < 1 + h2} ,
which is the plane orthogonal to l through q, is a support plane for ∂+C∞. See Figure 2.2.

Since ∂−C∞ and ∂+C∞ are pleated surfaces, ∂−C∞ contains an ideal triangle T−, such that
p ∈ T− (possibly p is on the boundary of T−). The ideal triangle might also be degenerate if
p is contained in an entire geodesic, but this will not affect the argument. Hence we can find
three geodesic half-lines in P− connecting p to ∂∞AdS3 (or an entire geodesic connecting p
to two opposite points in the boundary, if T− is degenerate). Analogously we have an ideal
triangle T+ in P+, compare Figure 2.3. The following sublemma will provide constraints on
the position the half-geodesics in P+ can assume. See Figure 2.4 and 2.5 for a picture of the
“sector” described in Lemma 2.1.

Sublemma 2.1. Suppose ∂−C∞ ∩ P− contains a half-geodesic

g = {t(cos θ, sin θ, 0) : t ∈ [0, 1)}
from p, asymptotic to the point at infinity η = (cos θ, sin θ, 0). Then ∂+C∞ ∩ P+ must be
contained in P+ \ S(η), where S(η) is the sector {x cos θ + y sin θ > 1}.

Proof. The computation will be carried out using the coordinates of the double cover ÂdS3

of AdS3. It suffices to check the assertion when θ = π, since in the statement there is a
rotational symmetry along the vertical axis. The half-geodesic g is parametrized by

g(t) = [sinh(t), 0, cosh(t), 0] ,
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P
−

P+

S(η)

gη

Figure 2.4. The sec-
tor S(η) as in Sub-
lemma 2.1.

p, q
η

S(η)
P
−

P+

Figure 2.5. The (x, y)-plane
seen from above. The sector
S(η) is bounded by the chord
in P+ tangent to the concentric
circle, which projects vertically
to P−.

for t ∈ (−∞, 0]. Since the width is less than π/2, every point in ∂+C∞ ∩ P+ must lie in the
region bounded by P− and the dual plane g(t)⊥. Indeed for every t, g(t)⊥ is the locus of
points at timelike distance π/2 from g(t). We have

P+ = {[cos(α) sinh(r), sin(α) sinh(r), cos(w) cosh(r), sin(w) cosh(r)] : r ≥ 0, α ∈ [0, 2π)} .
Hence the intersection P+ ∩ g(t)⊥ is given by imposing that a point of P+ has zero product
with points g(t), which gives the condition

sinh(t) cos(α) sinh(r) = cosh(t) cos(w) cosh(r) .

Thus points in the intersection are of the form (in the affine coordinates of {x3 6= 0}):
(

1

tanh(t)
,
tan(α)

tanh(t)
, tan(w)

)

.

Therefore, points in ∂+C∞ ∩ P+ need to have x ≥ 1/ tanh(t), and since this holds for every
t ≤ 0, we have x ≥ −1. �

By the Sublemma 2.1, if p is contained in the convex envelope of three points η1, η2, η3 in
∂∞(P−), then any point at infinity of ∂+C∞ ∩ P+ is necessarily contained in P+ \ (S(η1) ∪
S(η2)∪ S(η3)). We will use this fact to choose two pairs of points, η, η′ in ∂∞(P−) and ξ, ξ

′

in ∂∞(P+), in a convenient way. This is the content of next sublemma. See Figure 2.6.

Sublemma 2.2. Suppose p is contained in the convex envelope of three points η1, η2, η3
in ∂∞(P−). Then gr(φ∞) must contain (at least) two points ξ, ξ′ of ∂∞(P+) which lie in
different connected components of ∂∞(P+) \ (S(η1) ∪ S(η2) ∪ S(η3)).
Proof. The proof is simple 2-dimensional Euclidean geometry. Recall that the point q, which
is the “center” of the plane P+, is in the convex hull of gr(φ∞). If the claim were false, then
one connected component of ∂∞(P+) \ (S(η1) ∪ S(η2) ∪ S(η3)) would contain a sector S0 of
angle ≥ π. But then the points η1, η2, η3 would all be contained in the complement of S0.
This contradicts the fact that p is in the convex hull of η1, η2, η3. �

Remark 2.3. If p is in the convex envelope of only two points at infinity, which means that
P− contains an entire geodesic, the previous statement is simplified, see Figure 2.7.

Let us now choose two points η, η′ ∈ ∂∞(P−) among η1, η2, η3, and ξ, ξ
′ ∈ ∂∞(P+) in such

a way that ξ and ξ′ lie in two different connected components of ∂∞(P+) \ (S(η1) ∪ S(η2)).
The strategy will be to use this quadruple to show that the cross-ratio distortion of φ∞ is
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η1

∂∞P+

S0

η2

η3

p, q

Figure 2.6. The proof of Sub-
lemma 2.2. Below, the choice of
points η, η′, ξ, ξ′.

η′

S(η′)

P−

P+

S(η)

η

ξ

ξ′

P−

ξ′

S(η)

pη

ξ

q

Figure 2.7. The same
statement of Sublemma
2.2 is simpler if p is con-
tained in an entire geodesic
line contained in P−.

not too small, depending on the width w. However, such quadruple is not symmetric in
general. Hence ξ′ will be replaced later by another point ξ′′. First we need some tool to
compute the left and right projections to ∂∞H2 of the chosen points.

We use the plane P− to identify ∂∞AdS3 with ∂∞H2 × ∂∞H2. Let πl and πr denote left
and right projection to ∂∞(P−), following the left and right ruling of ∂∞AdS3. In what
follows, angles like θl, θr and similar symbols will always be considered in (−π, π].

Sublemma 2.4. Suppose ξ ∈ ∂∞(P+), where the length of the timelike geodesic segment
orthogonal to P− and P+ is w. If πl(ξ) = (cos(θl), sin(θl), 0), then πr(ξ) = (cos(θl −
2w), sin(θl − 2w), 0).

Proof. By the description of the left ruling (see Section 1), recalling h = tan(w), it is easy
to check that

ξ =(cos(θl), sin(θl), 0) + h(sin(θl),− cos(θl), 1) = (cos(θl) + h sin(θl), sin(θl)− h cos(θl), h)

=(
√

1 + h2 cos(θl − w),
√

1 + h2 sin(θl − w), h) .

By applying the same argument to the right projection, the claim follows. �

We can assume η′ = (−1, 0, 0). We shall adopt in this part the complex notation, i.e. H2 is
thought of in the disc model as a subset of C, where C is identified to the plane {z = 0} in the
affine chart. In this way, η′ corresponds to (−1,−1) ∈ ∂∞H2×∂∞H2. Let η = (eiθ0 , eiθ0); by
symmetry, we can assume θ0 ∈ [0, π); in this case we need to consider the point ξ = (eiθl , eiθr)
constructed above, with θr ∈ [θ0, π). More precisely, Sublemma 2.4 shows θr = θl − 2w; by
Sublemma 2.1 we must have θl −w /∈ (θ0 −w, θ0 +w)∪ (π−w, π)∪ (−π,−π+w) and thus,
by choosing ξ in the correct connected component (i.e. switching ξ and ξ′ if necessary),
necessarily θl ∈ [θ0 + 2w, π] (see Figure 2.8).
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We remark again that the quadruple Q = πl(ξ
′, η, ξ, η′) will not be symmetric in general,

so we need to consider a point ξ′′ instead of ξ′ so as to obtain a symmetric quadruple.
However, if θ0 ∈ (−π, 0), then one would consider the point ξ′ in the connected component
having θr ∈ (−π, θ0) - and then a point ξ′′ in the other connected component so as to have
a symmetric quadruple - and obtain the same final estimate.

So let ξ′′ = (eiθ
′′

l , eiθ
′′

r ) be a point on gr(φ) so that the quadruple Q = πl(ξ
′′, η, ξ, η′)

is symmetric; we are going to compute the cross-ratio of φ(Q) = πr(ξ
′′, η, ξ, η′). However,

in order to avoid dealing with complex numbers, we first map ∂∞H2 = ∂∞(P−) to RP1 ∼=
R ∪ {∞} using the Möbius transformation

z 7→ z − 1

i(z + 1)

which maps eiθ to tan(θ/2) ∈ R if θ 6= π, and −1 to ∞. We need to compute

(17) |ln |cr(φ(Q))|| =
∣

∣

∣

∣

ln

∣

∣

∣

∣

tan(θr/2)− tan(θ0/2)

tan(θ0/2)− tan(θ′′r /2)

∣

∣

∣

∣

∣

∣

∣

∣

and in particular we want to show this is uniformly away from 1. By construction θr < θl
(see also Figure 2.9), and since P− does not disconnect gr(φ), also θ′′r < θ′′l . Hence we have

(18) tan(θ0/2)− tan(θ′′r /2) ≥ tan(θ0/2)− tan(θ′′l /2) .

The condition that (θ′′l , θ0, θl,∞) forms a symmetric quadruple translates on R to the con-
dition that

(19) tan(θ0/2)− tan(θ′′l /2) = tan(θl/2)− tan(θ0/2) .

Using (18) and (19) in the argument of the logarithm in (17), we obtain:

tan(θr/2)− tan(θ0/2)

tan(θ0/2)− tan(θ′′r /2)
≤ tan((θl/2)− w)− tan(θ0/2)

tan(θl/2)− tan(θ0/2)
=: S(θl).

Note that S(θl) < 1 on [θ0 + 2w, π] and S(θl) → 0 when θl → θ0 + 2w or θl → π: this
corresponds to the fact that gr(φ∞) tends to contain a lightlike segment. On the other hand

P−

P+

η′
η

ξ

πl(ξ)

πr(ξ)

Figure 2.8. The choice of
points η, ξ, η′ in ∂∞AdS3,
endpoints at infinity of
geodesic half-lines in the
boundary of the convex
hull.

tan(θ0
2
)

tan(θ0
2
)

∞

∞

tan(θl
2
)tan(

θ′′l
2
)

tan(θr
2
)

tan(θ
′′

r
2
)

η

ξ′′

ξ

Figure 2.9. We give an upper
bound on the ratio between the
slopes of the two thick lines.
The dotted line represents the
plane P−.
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S(θl) is positive on [θ0 + 2w, π] and the maximum Smax is achieved at some interior point
of the interval. A computation gives

|cr(φ(Q))| ≤ Smax =

(

cos(θ0/2 + w)

cos(θ0/2) + sin(w)

)2

.

The RHS quantity depends on θ0, but is maximized on [0, π − 2w] for θ0 = 0, where it
assumes the value (1− sin(w))/(1 + sin(w)). This gives

e||φ∞||cr ≥
∣

∣

∣

∣

1

cr(φ(Q))

∣

∣

∣

∣

≥ 1 + sin(w)

1− sin(w)
.

From this we deduce

sin(w) ≤ e||φ∞||cr − 1

e||φ∞||cr + 1
= tanh

||φ∞||cr
2

or equivalently

tan(w) ≤ sinh
||φ∞||cr

2
.

Since ||φ∞||cr ≤ ||φ||cr, the proof is concluded. �

By using a very similar analysis, though simpler, we can prove an inequality in the
converse direction.

Proposition 3.B. Given any quasisymmetric homeomorphism φ of RP1, let w be the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

tanw ≤ sinh

( ||φ||cr
2

)

.

Proof. Suppose ||φ||cr > k. Then we can find a quadruple of symmetric points Q such that
|cr(φ(Q))| = ek. Consider the points ξ′, η, ξ, η′ on ∂∞AdS3 such that their left and right
projection are Q and φ(Q), respectively.

Recall that the isometries of AdS3 act on ∂∞AdS3 ∼= RP1 × RP1 as a pair of Möbius
transformations, therefore they preserve the cross-ratio of both Q and φ(Q). Thus we
can suppose Q = (−1, 0, 1,∞) and φ(Q) = (−ek/2, 0, e−k/2,∞) when the quadruples are
regarded as composed of points on R ∪ {∞}.

Passing to the coordinates in S1 (by the map θ ∈ S1 7→ tan(θ/2) ∈ R) for this quadruple
of points at infinity, it is easy to see that - in the affine chart {x3 6= 0} - the position of the
four points has an order 2 symmetry obtained by rotation around the z-axis. See Figure
2.10. This is ensured by the special renormalization chosen for Q and φ(Q).

Hence the geodesic line g1 with endpoints at infinity η and η′ is contained in the plane
P− as in the first part of the proof. More precisely, in the usual affine chart {x3 6= 0},

g1 = {(tanh(t), 0, 0) : t ∈ R} .
The geodesic line g2 connecting ξ and ξ′ has the form

g2(s) =

{(

cos(α) tanh(s)

cos(w′)
,
sin(α) tanh(s)

cos(w′)
, tan(w′)

)

: s ∈ R

}

.

The lines g1 and g2 are in the convex hull of gr(φ) and have the common orthogonal segment
l which lies in the z-axis in the usual affine chart (Figure 2.10), the feet of l being achieved
for t = 0 and s = 0.

The distance between g1 and g2 is achieved along this common orthgonal geodesic and its
value is w′. Recalling Sublemma 2.4 and the computation in its proof, we find α = θl−w′ =
π/2− w′ and θr = θl − 2w′. Since tan(θr/2) = e−k/2 and θl = π/2, one can compute

w′ = π/4− arctan(e−k/2) .
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It follows that

tanw ≥ tanw′ =
1− e−k/2

1 + e−k/2
= tanh

(

k

4

)

.

Since this is true for an arbitrary k ≤ ||φ||cr, the inequality

tanw ≥ tanh

( ||φ||cr
4

)

holds. �

p

q

P−

P+

η′ η

ξ

ξ′

g1

g2

Figure 2.10. The distance between the two lines g and g′ is achieved along the
common orthogonal geodesic.

3. Maximal surfaces with small principal curvatures

Let S be a maximal surface in AdS3. Let P− be a spacelike plane which does not intersect
the convex hull. We want to use the fact that the function u(x) = sin dAdS3(x, P−), satisfies
the equation

(L) ∆Su− 2u = 0 .

given in Proposition 1.8. This will enable us to use Equation (7) to give estimates on the
principal curvatures of S.

3.1. Uniform gradient estimates. We start by obtaining some technical estimates on
the gradient of u, which will have as a consequence that a maximal surface cannot be very
“tilted” with respect to a plane outside the convex hull.

Lemma 3.1. The universal constant L = 2(1 +
√
2) is such that, for every point x on a

maximal surface of nonpositive curvature in AdS3, || gradu||2 < L.

Proof. Let γ be a path on S obtained by integrating the gradient vector field; more precisely,
we impose γ(0) = x and

γ′(t) = − gradu

|| gradu|| .

Observe that

u(γ(t))− u(x) =

∫ t

0

du(γ′(s))ds =

∫ t

0

−〈gradu(s), gradu(s)

|| gradu(s)|| 〉ds = −
∫ t

0

|| gradu(s)||ds .
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We denote y(t) = || gradu(γ(t))||. We will show that y(0) is bounded by a universal constant,
using the fact that u(γ(t)) cannot become negative on S (recall Corollary 1.9). We have

(20)
d

dt

∣

∣

∣

∣

t=0

y(t)2 = 2〈∇γ′(t) gradu(γ(t)), gradu(γ(t))〉 = 2〈Hessu(γ′(t)), gradu(γ(t))〉 .

Since, by equation (7), Hessu− uE =
√

1− u2 + || gradu||2B and ||B(v)|| ≤ ||v||,

− d

dt

∣

∣

∣

∣

t=0

y(t)2 ≤
∣

∣

∣

∣

d

dt

∣

∣

∣

∣

t=0

y(t)2
∣

∣

∣

∣

≤2||Hessu(γ′(t))|||| gradu(γ(t))||

≤2
(

u(γ(t)) +
√

1− u(γ(t))2 + y(t)2
)

y(t) .

Using that

(

u(γ(t)) +
√

1− u(γ(t))2 + y(t)2
)2

≤ 2
(

u(γ(t))2 + 1− u(γ(t))2 + y(t)2
)

= 2
(

1 + y(t)2
)

we obtain

(21) − d

dt

∣

∣

∣

∣

t=0

y(t) ≤
√
2
√

1 + y(t)2 .

It follows that
∫ t

0

y′(s)
√

1 + y(s)2
ds = arcsinh y(t)− arcsinh y(0) ≥

√
2t ,

and therefore by a direct computation,

(22) y(t) ≥ y(0) cosh(
√
2t)−

√

1 + y(0)2 sinh(
√
2t) .

Now

u(γ(t))−u(x) = −
∫ t

0

y(s)ds ≤ 1√
2

(

−y(0) sinh(
√
2t) +

√

1 + y(0)2(cosh(
√
2t)− 1)

)

=: F (t) .

We must have u(γ(t)) ≥ 0 for every t; so we impose that F (t) ≥ −u(x) for every t. The
minimum of F is achieved for

tanh(
√
2tmin) =

y(0)
√

1 + y(0)2
.

Therefore

F (tmin) = − 1√
2

(

1 +
√

1 + y(0)2
)

≥ −u(x)

which is equivalent to y(0)2 ≤ 2(u(x)2 +
√
2u(x)). Recalling u ∈ [−1, 1], || gradu(x)||2 ≤

2(1 +
√
2) independently on the maximal surface S and on the support plane P−. �

We now apply the above uniform gradient estimate to prove a fact which will be of use
shortly. Given two unit timelike vectors v, v′ ∈ TxAdS

3 (both future-directed, or both past-
directed), we define the hyperbolic angle between v and v′ as the number α ≥ 0 such that
coshα = |〈v, v′〉|. Compare with Figure 3.2 below.

Lemma 3.2. There exists a constant ᾱ such that the following holds for every maximal
surface S in AdS3 and every totally geodesic plane P− in the past of S which does not
intersect S. Let l be a geodesic line orthogonal to P− and let x = l ∩ S. Suppose x is at
timelike distance less than π/4 from P−. Then the hyperbolic angle α at x between l and the
normal vector to S is bounded by α ≤ ᾱ.
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Proof. We use the same notation as Proposition 1.8. It is clear that the tangent direction to
l is given by the vector ∇U , where U(x) = sindAdS3(x, P−) = 〈x, p〉 is defined on the entire
AdS3 and p is the point dual to P−. Recall u is the restriction of U to S. From Equations
(9) and (11) of Proposition 1.8, we have

〈∇U,∇U〉 = −1 + u2 = || gradu||2 − 〈∇U,N〉2 .
It follows that the angle α at x between the normal to the maximal surface S and the
geodesic l can be computed as

(coshα)2 = 〈 ∇U(x)

||∇U(x)|| , N〉2 =
1− u(x)2 + || gradu(x)||2

1− u(x)2

and so α is bounded by Lemma 3.1 and the assumption that u(x)2 ≤ 1/2. �

3.2. Schauder estimates. We move to proving Schauder-type estimates on the derivatives
of the function u = sin dAdS3(·, P−), expressed in suitable coordinates, of the form

||u||C2(B0(0,
R
2
)) ≤ C||u||C0(B0(0,R))

where the constant does not depend on S and P−. Here B0(0, R) denotes the Euclidean ball
centered at 0 of radius R.

Denote by w the width of the convex hull of ∂∞S = gr(φ); recall that w ≤ π/2. Let x
be a point of S. By Remark 1.7, we have that dAdS3(x, ∂−C) + dAdS3(x, ∂+C) ≤ w, therefore
one among dAdS3(x, ∂−C) and dAdS3(x, ∂+C) must be smaller than π/4. Composing with an
isometry of AdS3 (which possibly reverses time-orientation), we can assume dAdS3(x, ∂−C) ≤
dAdS3(x, ∂+C), which implies that x has distance less than π/4 from P−. This assumption
will be important in the following.

Recall from Subsection 1.7 that, if l is a timelike line orthogonal to the plane P0 at x0,
the cylinder Cl(x0, P0, R0) is the set of points x ∈ AdS3 which lie on a spacelike plane Px

orthogonal to l such that dPx
(x, l ∩ Px) ≤ R0. See also Figure 1.5.

Proposition 4.A. There exists a radius R > 0 and a constant C > 0 such that for every
choice of:

• A maximal surface S ⊂ AdS3 with ∂∞S the graph of an orientation-preserving
homeomorphism;

• A point x ∈ S;
• A plane P− disjoint from S with dAdS3(x, P−) ≤ π/4,

the function u(·) = sin dAdS3(·, P−) expressed in terms of normal coordinates centered at x,
namely

u(z) = sin dAdS3(expx(z), P−)

where expx : R2 ∼= TxS → S denotes the exponential map, satisfies the Schauder-type
inequality

(23) ||u||C2(B0(0,
R
2
)) ≤ C||u||C0(B0(0,R)) .

Proof. Fix a radius R0 > 0. First, we show that there exists a radius R > 0 such that the
image of the Euclidean ball B0(0, R) under the exponential map at every point x ∈ S, for
every surface S, is contained in the cylinder Cl(x, TxS,R0). Indeed, suppose this does not
hold, namely

(24) inf
x∈S

sup {R : expx(B0(0, R)) ⊂ Cl(x, TxS,R0)} = 0 .

Then one can find a sequence Sn of maximal surfaces and points xn such that, if Rn is the
supremum of those radii R for which expxn

(B0(0, R)) is contained in the respective cylinder

of radius R0, then Rn goes to zero. We can compose with isometries of AdS3 so that all points
xn are sent to the same point x0 and all surfaces are tangent at x0 to the same plane P0.
By Lemma 1.20, there exists a subsequence converging inside Cl(x0, P0, R0) to a maximal
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surface S∞. Therefore the infimum in the LHS of Equation (24) cannot be zero, since for
the limiting surface S∞ there is a radius R∞ such that expx(B0(0, R∞)) ⊂ Cl(x, TxS,R0).

We use a similar argument to prove the main statement. We can consider P− a fixed
plane, and a point x ∈ S lying on a fixed geodesic l orthogonal to P−. Suppose the claim
does not hold, namely there exists a sequence of surfaces Sn in the future of P− such that
for the function un(z) = sin dAdS3(expxn

(z), Pn),

||un||C2(B0(0,
R
2
)) ≥ n||u||C0(B0(0,R)) .

Let us compose each Sn with an isometry Tn ∈ Isom(AdS3) so that S′
n = Tn(Sn) is tangent

at a fixed point x0 to a fixed plane P0, whose normal unit vector is N0.
We claim that the sequence of isometries Tn is bounded in Isom(AdS3), since T−1

n maps
the element (x0, N0) of the tangent bundle TAdS3 to a bounded region of TAdS3. Indeed,
by our assumptions, T−1

n (x0) = xn lies on a geodesic l orthogonal to P− and has distance
less than π/4 (in the future) from P−; moreover by Lemma 3.2 the vector (dTn)

−1(N0) forms
a bounded angle with l.

By Lemma 1.20, up to extracting a subsequence, we can assume S′
n → S′

∞ on Cl(x0, P0, R0)
with all derivatives. Since we can also extract a converging subsequence from Tn, we as-
sume Tn → T∞, where T∞ is an isometry of AdS3. Therefore Tn(P−) converges to a totally
geodesic plane P∞.

Using the first part of this proof and Lemma 1.20, on the image of the ball B0(0, R) under
the exponential map of S′

n, the coefficients of the Laplace-Beltrami operators ∆S′

n
(in normal

coordinates on B0(0, R)) converge to the coefficients of ∆S′

∞
. Hence the operators ∆S′

n
− 2

are uniformly strictly elliptic with uniformly bounded coefficients. By classical Schauder
estimates (see [GT83]), using the fact that un solves the equation ∆S′

n
(un)− 2un = 0, there

exists a constant c such that

||un||C2(B0(0,
R
2
)) ≤ c||un||C0(B0(0,R)) ,

for every n. This gives a contradiction. �

Remark 3.3. The statements of Lemma 3.2 and Proposition 4.A could be improved so as to
be stated in terms of the choice of any radius R > 0, any number w0 < π/2 (replacing π/4),
where the constant C would depend on such choices. Similarly for Proposition 3.4 below.
However, these details would not improve the final statement of Theorem 1.A and thus are
not pursued here.

We are therefore in a good point to obtain an estimate of the second derivatives of u
(and thus for the principal curvatures of S) in terms of the width w. However, let us
remark that in Anti-de Sitter space the projection from a spacelike curve or surface to
a totally geodesic spacelike plane is not distance-contracting. Hence we need to give an
additional computation in order to ensure (by substituting the radius R in Proposition 4.A
by a smaller one if necessary) that the projection from the geodesic balls BS(x,R) to P−

has image contained in a uniformly bounded set. This is proved in the next Proposition, see
also Figure 3.1.

Proposition 3.4. There exist constant radii R′
0 and R′ such that for every maximal surface

of nonpositive curvature S in AdS3, every point x0 ∈ S and every totally geodesic plane
P− which does not intersect S, such that the distance of x0 from P− is at most π/4, the
orthogonal projection π|S : S → P− maps S ∩ Cl(x0, Tx0

S,R′
0) to BP−

(π(x0), R
′).

Proof. We can suppose Tx0
S is the intersection of the plane {x4 = 0} with AdS3 and x0 =

[0, 0, 1, 0]. As in the coordinate system (15), the points x in Cl(x0, Tx0
S,R′

0) have coordinates

x = [cos θ sinh r, sin θ sinh r, cos ζ cosh r, sin ζ cosh r] ,



26 ANDREA SEPPI

for r ≤ R′
0. Let us denote by I+(p) (resp. I−(x0)) the cone of points connected to p by

a future-directed (resp. past-directed) timelike path in AdS3 \ Q, where Q is the plane at
infinity in the affine chart.

Since S is spacelike, S∩Cl(x0, Tx0
S,R′

0) is contained in Cl(x0, Tx0
S,R′

0)\(I+(x0)∪I−(x0)).
See also Figure 1.5. Hence |〈x, x0〉| > 1 (recall Equation (3) in Section 1), which is equivalent
to

(25) | cos ζ| > 1

cosh r
.

Let l be the geodesic through x0 orthogonal to P−. We will conduct the computation

in the double cover ÂdS3 ⊂ R2,2. We can assume l has tangent vector at x0 given by
l′(0) = (sinhα, 0, 0, coshα), where of course α is the angle between l and the normal to S at
x0. Therefore

l(t) = (cos t)x0 + (sin t)l′(0) = (sin t sinhα, 0, cos t, sin t coshα) .

Let w1 = dAdS3(x0, P−), so P− = p⊥, where p is the point

p = l′(−w1) = (cosw1 sinhα, 0, sinw1, cosw1 coshα) .

The projection of x to P− is given by

π(x) =
x+ 〈x, p〉p
√

1− 〈x, p〉2

provided 〈x, p〉2 < 1, which is the condition for x to be in the domain of dependence of P−.
The distance d between π(x) and π(x0) = l(−w1) is given by the expression

(26) coshd = |〈π(x), l(−w1)〉| =
∣

∣

∣

∣

∣

〈x, l(−w1)〉
√

1− 〈x, p〉2

∣

∣

∣

∣

∣

.

Now, we have

|〈x, p〉| =| cos θ sinh r cosw1 sinhα− cos ζ cosh r sinw1 − sin ζ cosh r cosw1 coshα|

≤ sinh r sinhα+

√
2

2
cosh r + sinh r coshα =

√
2

2
cosh r + (sinh r)eα .

In the last line, we have used that | sin ζ| =
√

1− (cos ζ)2 ≤ tanh r, by Equation (25), and

that sinw1 <
√
2/2. Since the hyperbolic angle α is uniformly bounded by Lemma 3.2

(Figure 3.2), it follows that if r ≤ R′
0 for R′

0 sufficiently small,
√

1− 〈x, p〉2 is uniformly
bounded from below. Moreover,

|〈x, l(−w1)〉| =| − cos θ sinh r sinw1 sinhα− cos ζ cosh r cosw1 + sin ζ cosh r sinw1 coshα|
≤ sinh r sinhα+ cosh r + cosh r coshα

is uniformly bounded. This shows, from Equation (26), that coshd ≤ coshR′ for some
constant radius R′ (depending on R′

0). This concludes the proof. �

Therefore, replacing R0 in Lemma 1.20 with min {R0, R
′
0}, we have that the geodesic

balls of radius R (R as in Proposition 4.A) on S centered at x project to P− with image
contained in BP−

(π(x), R′). The radii R and R′ are fixed, not depending on S.

3.3. Principal curvatures. In this subsection we finally prove the estimate on the supre-
mum of the principal curvatures of S in terms of the width. Recall the statement of the
main theorem of this section:

Theorem 1.A. There exists a constant C1 such that, for every maximal surface S with
||λ||∞ < 1 and width w,

||λ||∞ ≤ C1 tanw .
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P0

x0

P
−

x

Figure 3.1. Projec-
tion from points in
Cl(x0, Tx0

S,R′

0) which
are connected to x0 by
a spacelike geodesic have
bounded image.

P0

x0

P
−

α

S

Figure 3.2. The key point
is that the hyperbolic angle
α is uniformly bounded, by
Lemma 3.2.

We take an arbitrary point x ∈ S. By Remark 1.7, we know that there are two disjoint
planes P− and P+ with dAdS3(x, P−) + dAdS3(x, P+) = w1 + w2 ≤ w where w is the width.
As in the previous subsection, we will assume P− is a fixed plane in AdS3, upon composing
with an isometry. Figure 3.3 gives a picture of the situation of the following lemma.

Lemma 3.5. Let p ∈ P−, q ∈ P+ be the endpoints of geodesic segments l1 and l2 from
x ∈ S orthogonal to P− and P+, of length w1 and w2, with w1 ≤ w2. Let p′ ∈ P− a point at
distance R′ from p and let d = dAdS3((π|P+

)−1(p′), P−). Then

(27) tan d ≤ (1 +
√
2) coshR′ tan(w1 + w2).

Proof. As in the previous proof, we do the computation in ÂdS3. We assume x = (0, 0, 1, 0)
and l1 is the geodesic segment parametrized by l1(t) = (cos t)x − (sin t)(0, 0, 0, 1), so that
the plane P− is dual to p− = (0, 0, sinw1, cosw1). Points on the plane P− at distance R′

from π(x) = l1(w1) = (0, 0, cosw1,− sinw1) have coordinates

p′ = (cos θ sinhR′, sin θ sinhR′, coshR′ cosw1,− coshR′ sinw1) .

We also assume l2 has initial tangent vector l′2(0) = (sinhα, 0, 0, coshα), where α is the hy-
perbolic angle between (0, 0, 0, 1) and l′2(0), so that l2(t) = (cos t)x+(sin t)(sinhα, 0, 0, coshα).
Note that l′2(w2) = (cosw2 sinhα, 0,− sinw2, cosw2 coshα) =: p+ is the unit vector orthog-
onal to P+, by construction.

We derive a condition which must necessarily be satisfied by α, because P− and P+ are
disjoint. Indeed, we must have

|〈p−, p+〉| = − sinw1 sinw2 + cosw1 cosw2 coshα ≤ 1 ,

which is equivalent to

(28) coshα <
1 + sinw1 sinw2

cosw1 cosw2
.
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Let us now write

(tanhα)2 =

(

1 +
1

coshα

)(

1− 1

coshα

)

≤ 2(coshα− 1) ,

and therefore, using (28),

(29) (tanhα)2 < 2

(

1− cos(w1 + w2)

cosw1 cosw2

)

≤ 2

(

1− (cos(w1 + w2))
2

cosw1 cosw2

)

≤ 2
(sin(w1 + w2))

2

cosw1 cosw2
.

To compute d, we now write explicitly the geodesic γ starting from p′ and orthogonal to
P−. We find d such that γ(d) ∈ P+ and this will give the expected inequality. We have

γ(d) = (cos d)p′ + (sin d)(0, 0, sinw1, cosw1)

and γ(d) ∈ P+ if and only if 〈γ(d), p+〉 = 0, which gives the condition

cos d(coshR′(cosw1 sinw2 + cosw2 sinw1 coshα) + sinhR′(cos θ cosw2 sinhα))

+ sin d(sinw1 sinw2 − cosw1 cosw2 coshα) = 0 .

We express

tand =coshR′ cosw1 sinw2 + cosw2 sinw1 coshα

cosw1 cosw2 coshα− sinw1 sinw2

+sinhR′ cos θ cosw2 sinhα

cosw1 cosw2 coshα− sinw1 sinw2

The first term in the RHS is easily seen to be less than coshR′ tan(w1 + w2). We turn to
the second term. Using (29), it is bounded by

sinhR′ tanhα
cosw2

cos (w1 + w2)
≤

√
2 sinhR′ tan(w1 + w2)

(

cosw2

cosw1

)
1
2

.

In conclusion, having assumed w1 ≤ w2, we can put cos(w2)/ cos(w1) ≤ 1, sum the two
terms and get

tand ≤ (1 +
√
2) coshR′ tan(w1 + w2) .

�

P+

x0

P
−

π

p

p

l2

l1

Figure 3.3. The setting of Lemma 3.5. We assume w1 = dAdS3(x0, p) <

dAdS3(x0, q) = w2.
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Proof of Theorem 1.A. Let x ∈ S and consider the point x− of ∂−C which minimizes the
distance from x, where C is the convex hull of S. Let P− be the plane through x− orthogonal
to the geodesic line containing x and x− (recall Remark 1.7). The plane P− is then a support
plane of ∂−C. We construct analogously the support plane P+ for ∂+C. As discussed in
Remark 1.7,

dAdS3(x, P−) + dAdS3(x, P+) ≤ w .

Moreover, we can assume (upon composing with a time-orientation-reversing isometry, if
necessary) that dAdS3(x, P−) ≤ dAdS3(x, P+). As a consequence, dAdS3(x, P−) ≤ π/4.

Let us now consider the function u, defined in normal coordinates:

u = sinh dAdS3(expx(·), P−) .

By Equation (7), we have the following expression for the shape operator of S:

B =
1

√

1− u2 + || gradu||2
(Hess u− uE) .

In normal coordinates at x the Hessian of u is given just by the second derivatives of u;
in Proposition 4.A we showed the second derivatives of u are bounded, up to a factor, by
||u||C0(BS(x,R)). By Proposition 3.4, ||u||C0(BS(x,R)) is smaller than the supremum of the
hyperbolic sine of the distance d from P− of points of S which project to BP−

(π(x), R′).
Therefore we have the following estimate for the principal curvatures at x:

|λ| ≤ C′ ||u||
√

1− ||u||2
≤ C′ tan

(

sup{dAdS3(p, P−) : p ∈ (πS)
−1(BP−

(π(x), R′))}
)

.

The constant C′ involves the constant which appears in Equation (23) in Proposition 4.A.
The quantity in brackets in the RHS is certainly less than

(

sup{dAdS3(p, P−) : p ∈ (πP+
)−1(BP−

(π(x), R′))}
)

.

Thus, applying Lemma 3.5 we obtain:

||λ||∞ ≤ C1 tanw .

The constant C then involves C′ and coshR′. Such inequality holds independently on the
point x and thus concludes the proof. �

4. Maximal surfaces with large principal curvatures

The main goal of this section is to prove Theorem 1.B. Recall that we denote by ||λ||∞
the supremum of the principal curvatures of a maximal surface S, and by w the width of
the convex hull of S.

Theorem 1.B. There exist universal constants M > 0 and δ ∈ (0, 1) such that, if S is an
entire maximal surface in AdS3 with δ ≤ ||λ||∞ < 1 and width w, then

tanw ≥
(

1

1− ||λ||∞

)1/M

.

Observe that it clearly suffices to prove that for every λ0 ≥ δ, if there exists a point
x0 ∈ S such that λ(x0) = λ0, then

(30) tanw ≥
(

1

1− λ0

)1/M

.

Indeed, if ||λ||∞ is not achieved on S, one has that Equation (30) holds for every λ0 < ||λ||∞,
and by continuity (30) holds for λ0 = ||λ||∞ as well.
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4.1. Uniform gradient estimates. We define the function v : S → R by

v(x) = ln

(

1

1− λ(x)

)

,

where λ(x) is the positive eigenvalue of the shape operator. Observe that v → ∞ as λ(x)
approaches 1, while v(x) = 0 if x is an umbilical point, and the statement of Theorem 1.B
amounts to proving that tanw ≥ ev(x0)/M . The first important step is to show that, if v is
large at some point, then it remains large on a geodesic ball of S with large radius.

Proposition 4.1. There exists a universal constant M such that || grad v|| ≤M , for every
maximal surface S in AdS3 with uniformly negative curvature.

We will prove some a priori estimates for the function χ = − ln |λ|, which is defined in
the complement of umbilical points and it takes values in [0,+∞). Recall that by Lemma
1.13 the function χ satisfies the quasi-linear equation:

(Q) ∆Sχ = 2(1− e−2χ) ,

while by the Gauss equation the curvature of S is given by:

(31) K = −1 + e−2χ .

We start by computing the gradient and the Laplacian of the function || gradχ||2.
Lemma 4.2. The following identities hold:

(32) grad(|| gradχ||2) = 2Hessχ(gradχ) ,

(33) ∆S(|| gradχ||2) = (10e−2χ − 2)|| gradχ||2 + 2||Hessχ||2 .
Proof. In order to compute the gradient, notice that if ξ is any vector tangent to S, then

ξ(|| gradχ||2) = 2〈∇ξ(gradχ), gradχ〉 = 2〈Hessχ(ξ), gradχ〉 = 2〈ξ,Hessχ(gradχ)〉 .
This proves the first identity. By taking the covariant derivative of grad || gradχ||2 we get

Hess(|| gradχ||2) = 2∇(Hessχ)(gradχ) + 2(Hessχ)2

= 2∇•(∇ gradχ)(gradχ) + 2(Hessχ)2

= 2∇gradχ(Hessχ) + 2R(•, gradχ) gradχ+ 2(Hessχ)2 .

Taking the trace we get

∆S(|| gradχ||2) = 2 gradχ(∆Sχ) + 2K|| gradχ||2 + 2||Hessχ||2 ,
and using (Q) and (31) we deduce that

∆S(|| gradχ||2) = 4〈gradχ, grad(1− e−2χ)〉+ 2(−1 + e−2χ)|| gradχ||2 + 2||Hessχ||2

= 4 · 2e−2χ|| gradχ||2 + 2(−1 + e−2χ)|| gradχ||2 + 2||Hessχ||2

= (10e−2χ − 2)|| gradχ||2 + 2||Hessχ||2 .
This concludes the proof. �

Lemma 4.3. Let g : (0,+∞) → R any smooth function and consider the function ψ : S → R

defined by
ψ = eg(χ)|| gradχ||2 .

Then we have

(34) ∆Sψ ≥ a(χ)ψ2 + b(χ)ψ + c(χ) ,

where

(35)
a(χ) = g′′e−g ,
b(χ) = 6g′(χ)(1 − e−2χ) + (10e−2χ − 2) ,
c(χ) = eg(∆Sχ)

2 .
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Proof. Let us put α = eg, then (using (32)) we have

gradψ = α′|| gradχ||2 gradχ+ 2αHessχ(gradχ) .

Differentiating again we get

Hessψ = α′′|| gradχ||2 gradχ⊗ gradχ+ α′|| gradχ||2Hessχ+ 2α′ gradχ⊗ (Hessχ(gradχ))

+ 2α′ (Hessχ(gradχ))⊗ gradχ+ αHess(|| gradχ||2) ,
so by using (Q) and (33) we get

∆Sψ = α′′|| gradχ||4 + 2α′(1− e−2χ)|| gradχ||2 + 4α′〈gradχ,Hessχ(gradχ)〉
+ α(10e−2χ − 2)|| gradχ||2 + 2α||Hessχ||2

= α′′|| gradχ||4 + (2α′(1− e−2χ) + α(10e−2χ − 2))|| gradχ||2+
+ 4α′〈gradχ,Hessχ(gradχ)〉+ 2α||Hessχ||2 .

The main term to be estimated is the scalar product 〈gradχ,Hessχ(gradχ)〉. Let µ1, µ2

be the eigenvalues of Hessχ and x1, x2 be the coordinates of gradχ with respect to an
orthonormal basis of eigenvectors of Hessχ. Then we have

〈gradχ,Hessχ(gradχ)〉 = µ1x
2
1 + µ2x

2
2 .

Notice that ∆Sχ = µ1 + µ2, so if we put ξ = µ1 − µ2 we deduce that

〈gradχ,Hessχ(gradχ)〉 = ∆Sχ

2
|| gradχ||2 + ξ

2
(x21 − x22) .

So we get

(36) 4α′〈gradχ,Hessχ(gradχ)〉 = 4α′(1 − e−2χ)|| gradχ||2 + 2α′ξ(x21 − x22) .

Putting (36) into the equality we obtained previously yields

∆Sψ = α′′|| gradχ||4 + (2α′(1− e−2χ) + α(10e−2χ − 2))|| gradχ||2

+ 4α′(1 − e−2χ)|| gradχ||2 + 2α′ξ(x21 − x22) + 2α||Hessχ||2

= α′′|| gradχ||4 + (6α′(1− e−2χ) + α(10e−2χ − 2))|| gradχ||2

+ 2α′ξ(x21 − x22) + 2α||Hessχ||2 .
Now observe that

|2α′ξ(x21 − x22)| ≤ 2|α′||ξ||| gradχ||2 ≤ (α′)2

α
|| gradχ||4 + αξ2 ,

hence we obtain

∆Sψ ≥ α′′|| gradχ||4 + (6α′(1 − e−2χ) + α(10e−2χ − 2))|| gradχ||2

− (α′)2

α
|| gradu||4 − αξ2 + 2α||Hessu||2 =

=

(

α′′ − (α′)2

α

)

|| gradχ||4 + (6α′(1 − e−2χ) + α(10e−2χ − 2))|| gradχ||2

+ α(2||Hessχ||2 − ξ2) .

But ||Hessχ||2 = µ2
1 + µ2

2, so that

2||Hessχ||2 − ξ2 = 2(µ2
1 + µ2

2)− (µ1 − µ2)
2 = (µ1 + µ2)

2 = (∆Sχ)
2 .

We finally obtain

∆Sψ ≥
(

α′′ − (α′)2

α

)

|| gradχ||4 + (6α′(1− e−2χ) + α(10e−2χ − 2))|| gradχ||2 + α(∆Sχ)
2 .
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Observing that α′ = g′eg and α′′ = (g′′ + (g′)2)eg, we get α′′ − (α′)2/α = g′′eg and thus

∆Sψ ≥ g′′eg|| gradχ||4 + (6g′(1− e−2χ) + (10e−2χ − 2))eg|| gradχ||2 + α(∆Sχ)
2

= g′′e−gψ2 + (6g′(1 − e−2χ) + (10e−2χ − 2))ψ + eg(∆Sχ)
2 ,

as in the statement. �

Remark 4.4. In the hypothesis of Lemma 4.3, suppose that g is a convex function so that
a(χ) > 0. If supχ>0(−b(χ)/a(χ)) =M1 < +∞ we have that ∆Sψ > 0 whenever ψ > M1 .

Lemma 4.5. There is a constant M2 such that || gradλ|| < M2 for any maximal surface of
nonpositive curvature in AdS3.

Proof. Take a point p ∈ S and consider normal coordinates x, y centered at p. We have that

B(∂x) = a(x, y)∂x + b(x, y)∂y ,

where a, b are smooth functions in a neighborood of p. Since B is traceless self-adjoint, it
turns out that

λ =
√

a2 + b2 ,

so that

gradλ =
1√

a2 + b2
(a grada+ b grad b) .

In particular

|| gradλ||2 ≤ || grada||2 + || grad b||2 .
On the other hand, at the point p we have

(∇B)(∂x) = ∇(B(∂x)) = (grada)⊗ (∂x) + (grad b)⊗ (∂y) ,

so we deduce that at the point p

|| gradλ||2 ≤ ||∇B||2 .
By applying Lemma 1.20, it is not difficult to show that there exists a universal constantM2

such that ||∇B|| ≤M2 for any point of any maximal surface with nonpositive curvature. �

Proof of Proposition 4.1. We will derive an a-priori bound on || gradv|| where
v = − ln(1− |λ|) = − ln(1 − e−χ) .

Indeed we have that

(37) || gradv||2 =
1

(1 − e−χ)2
|| gradλ||2 =

e−2χ

(1− e−χ)2
|| gradχ||2 ,

hence in particular || grad v|| ≤ M2 at umbilical points, where M2 is the constant given by
Lemma 4.5. On the other hand, we have || gradv||2 = eg|| gradχ||2 where

g(χ) = −2(χ+ ln(1− e−χ)) .

By a direct computation

g′ = −2− 2
e−χ

1− e−χ
= − 2

1− e−χ
,

g′′ =
2e−χ

(1− e−χ)2
.

Applying Lemma 4.3 we have

∆S(|| grad v||2) ≥ a(χ)|| grad v||4 + b(χ)|| grad v||2 + c(χ) ,
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where c(χ) ≥ 0 and

a(χ) =

(

2e−χ

(1− e−χ)2

)

(1 − e−χ)2e2χ = 2eχ ,

b(χ) =

(

−12

(

1

1− e−χ

)

(1− e−2χ) + (10e−2χ − 2)

)

= 10e−2χ − 12e−χ − 14 .

Observe that −b(χ)/a(χ) → 0 as χ→ +∞ and −b(χ)/a(χ) → 8 as χ → 0. By Remark 4.4,
taking M = supχ>0(−b(χ)/a(χ)) we have that ∆S(|| grad v||2)| > 0 whenever || grad v||2 >
M .

Summarizing we have that

• || gradv||2 is bounded by a constant M2 at umbilical points;
• if at some non-umbilical point || grad v||2 > M1 then ∆S(|| grad v||2) > 0.

We now claim that

(38) sup || grad v||2 ≤M2 := max(M1,M2) .

To prove the claim, suppose to have a sequence of points xn such that || gradv||2(xn) con-
verges to supS || grad v||2. The latter is finite by Equation (37), since || gradλ|| is bounded
and e−χ stays uniformly away from 1 by the hypothesis of uniformly negative curvature of
S. Take a sequence of isometries Tn of AdS3 so that Tn(xn) is a fixed point x0 and the
maximal surface Sn = Tn(S) is tangent to a fixed spacelike plane through x0.

By Lemma 1.20, up to a subsequence the surfaces Sn converge C∞ on compact sets to a
maximal surface S∞.

If x0 is an umbilical point for S∞, then by Equation (37) || grad vn(x0)||2 is bounded by
(1+ǫ)M2 for n large. Hence || grad v(xn)|| is bounded by (1+ǫ)M2, and thus supS || grad v||2
is bounded by (1 + ǫ)M2. (It is actually bounded by M2 itself, since in the argument ǫ is
arbitrary.) On the other hand, if x0 is not an umbilical point for S∞, by the C∞ convergence

|| gradv∞||2(x0) = sup
S

|| grad v||2 = sup
S∞

|| gradv∞||2 ,

therefore x0 is an interior maximum point for || grad v∞||2. Hence ∆S || gradv∞||2(x0) ≤ 0
and || gradv∞||2 ≤M1 by the first part of the proof. �

Proposition 4.B. There exists a universal constantM such that, for every maximal surface
S of nonpositive curvature in AdS3 and every pair of points p, q ∈ S,

1− λ(q) ≤ eMdS(p,q)(1− λ(p)) .

Proof. Using Proposition 4.1, let γ : [0, dS(p, q)] be a unit speed parameterization of the
geodesic segment connecting p and q, and get

|v(p)− v(q)| =
∣

∣

∣

∣

∣

∫

[0,dS(p,q)]

dv(γ̇(t))dt

∣

∣

∣

∣

∣

≤
∫

[0,dS(p,q)]

|| grad v||dt ≤MdS(p, q) .

Therefore

(39) v(q) ≥ v(p)−MdS(p, q) ,

from which the statements follows, by recalling that v is the function on S defined so that
ev(x) = 1/(1− λ(x)). �

In particular, we will apply Proposition 4.B in the following form.

Corollary 4.6. There exists a universal constant M such that, for every maximal surface
S in AdS3 and every pair x0 ∈ S, v(x) ≥ v(x0)/2 for every point x in the geodesic ball
BS(x0, v(x0)/2M).

Proof. Follows directly from Equation (39) in the proof of Proposition 4.B, with the choice
d(x0, x) ≤ v(x0)/2M . �
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4.2. Barriers for the lines of curvature. We need also to deduce that, on a large ball
BS(x0, v(x0)/2M) as estimated in Proposition 4.B, the lines of curvature of a maximal
surface S are closer and closer to being geodesics, in the sense that their intrinsic acceleration
is small, as λ(x0) tends to 1.

Corollary 4.7. For every δ ∈ (0, 1) there exists a constant M(δ) such that, for every
maximal surface S in AdS3 and every point x0 ∈ S with λ(x0) ≥ δ, the lines of curvature
of S have intrinsic acceleration, inside the ball BS(x0, v(x0)/2M) for the intrinsic metric of
S, bounded by:

||∇S
γ̇c
γ̇c(t)|| ≤M(δ)e−v(γc(t)) ,

where γc is a unit-speed parametrization of any portion of line of curvature of S contained
inside the ball BS(x0, v(x0)/2M).

Proof. It turns out (see for instance [KS07]) that the second fundamental form II of S is
the real part of a holomorphic quadratic differential for the complex structure underlying
the induced metric on S. Let us denote by q this holomorphic quadratic differential, so that
II = Re(q). By Corollary 4.6, assuming λ(x0) ≥ δ > 0, the eigenvalues of S are nonzero on
the geodesic ball BS(x0, v(x0)/2M), and thus also q 6= 0 on the same ball. Hence one can
find a conformal chart for BS(x0, v(x0)/2M) for which q = dz2.

In this coordinate the first fundamental form I of S has the form eϕ|dz|2, for some real
function ϕ. We claim that ϕ coincides with the function χ = − ln |λ|. Indeed, observe that
the shape operator of S has the form

B = e−ϕII = e−ϕRe(q) = e−ϕ

(

1 0
0 −1

)

=

(

e−ϕ 0
0 −e−ϕ

)

.

Since the eigenvalues of B are ±λ, assuming λ > 0, we get λ = e−ϕ and therefore ϕ = χ as
claimed.

In such coordinates, the lines of curvature of S are the lines with constant coordinates
x = ℜ(z) or y = ℑ(z). Let us denote by ex, ey the orthonormal frame given by such lines of
curvature. By a direct computation, one checks that

∇S
exex =

(

−1

2
e−

χ
2 ∂yχ

)

ey , ∇S
eyey =

(

−1

2
e−

χ
2 ∂xχ

)

ex .

Hence one has

||∇S
exex||

2 =
1

4
e−χ(∂yχ)

2 , ||∇S
eyey||

2 =
1

4
e−χ(∂xχ)

2 .

Observe that the gradient of χ, for the induced metric on S, has squared norm

|| gradχ||2 = e−χ((∂xχ)
2 + (∂yχ)

2) ,

and thus one directly obtains

||∇S
exex||

2 ≤ 1

4
|| gradχ||2 .

On the other hand, by Equation (37), we have

|| gradχ||2 = e2χe−2v|| grad v||2 .
Since by hypothesis λ(x0) is bounded away from zero by δ, by Corollary 4.6 eχ is uniformly
bounded by some constant C = C(δ) on BS(x0, v(x0)/2M). Hence

||∇S
exex|| ≤ C(δ)Me−v ,

whereM is the constant of Proposition 4.1, and the same holds for ||∇S
eyey||. Upon relabeling

the constant M , this concludes the proof. �
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In the following, we will always fix δ ∈ (0, 1) and denote byM a larger constant satisfying
the statement of both Proposition 4.1 and Corollary 4.7.

Observe that, given a totally geodesic plane P , the surface at timelike distance d from
P (in the past, say) is a complete convex constant mean curvature umbilical surface with
shape operator (tan d)E at every point. This follows for instance by applying Equation
(14) of Lemma 1.14. Therefore, given a surface S with future unit normal vector N0 at
the point x0 ∈ S, consider the totally geodesic plane P which contains the point y0 =
expx0

((arctan λ̄)N0) and is orthogonal to the timelike line through x0 and y0. Thus the

surface at distance d̄ = arctan λ̄ in the past from P , which we denote by Uλ̄(x0, N0), is
an umbilical constant mean curvature surface tangent to S at x0. The shape operator of
Uλ̄(x0, N0) is λ̄E. See Figure 4.1.

P

x0

N0

d̄

y0

Figure 4.1. The umbilical surface Uλ̄(x0, N0), for λ̄ = tan d̄, constructed as a
parallel surface of the totally geodesic plane P .

We shall denote by l+c (x0, a) (resp. l−c (x0, a)) the segment of the line of curvature of S
for the positive (resp. negative) eigenvalue, which contains x0 and whose extrema are at
distance a from x0 for the induced metric.

The following lemma is a subtle application of a maximum principle argument. See also
Figure 4.2 (for the statement) and Figure 4.3 (for the proof).

Lemma 4.8. There exists a constant δ ∈ (0, 1) as follows. Suppose S is a maximal surface
with future unit normal vector N0 at x0 and with λ(x0) = 1 − e−v(x0) ≥ δ. Then l+c (x0, a)
is entirely contained in the convex side of the surface Uλ1

(x0, N0), for a = v(x0)/2M and
λ1 = 1− e−v(x0)/4.

Proof. Choose δ > 0 as in Corollary 4.7, and suppose ab absurdum that p ∈ l+c (x0, a) is
strictly in the past of Uλ1

(x0, N0).
Recall that, for a spacelike curve γ in a Lorentzian manifold, the curvature of γ is defined

as κ =
√

|〈∇S
γ̇ γ̇,∇S

γ̇ γ̇〉|. If γ+c : [−a, a] → l+c (x0, a) is a unit-speed parameterization of

l+c (x0, a), we have

∇γ̇+
c
γ̇+c = ∇S

γ̇+
c
γ̇+c + λN ,

where N is the unit future-directed normal vector field of the maximal surface S. Hence

κ2 = λ2 − ||∇S
γ̇+
c
γ̇+c ||2 .



36 ANDREA SEPPI

On the other hand, let T be the timelike plane spanned by γ̇+c and N0, and let γ1 be a
unit-speed parameterization of the spacelike curve Uλ1

(x0, N0)∩T . Such curve is a geodesic
of Uλ1

(x0, N0), by a classical argument of symmetry.
We first claim that γ+c (−ǫ, ǫ) is contained in the future of Uλ1

(x0, N0) for some ǫ > 0.
Indeed, if this were not the case, the curvature of γ1 at x0 should be larger than the curvature
of γ+c . Since γ1 is geodesic for Uλ1

(x0, N0), the curvature of γ1 is

κ1 = λ1 .

By Corollary 4.6 we have v(x) ≥ v(x0)/2 on BS(x0, v(x0)/2M), and by Corollary 4.7, the
intrinsic acceleration of l+c (x0, a) is bounded by ||∇S

γ̇+
c
γ̇+c || ≤Me−v ≤Me−v(x0)/2. Hence

κ2 = λ2 − ||∇S
γ̇+
c
γ̇+c ||2 ≥ (1− e−v(x0)/2)2 −Me−v(x0)/2

= 1− (2 +M)e−v(x0)/2 + e−v(x0)

≥ 1− e−v(x0)/4 ≥ (1− e−v(x0)/4)2 = λ21 = κ21 .

We have replaced δ by a larger number if necessary, and used the assumption λ(x0) ≥ δ.
This gives a contradiction and concludes the claim.

Now consider the function d : [−a, a] → R, where d(t) is the signed distance of γ+c (t) from
the surface Uλ1

(x0, N0). The function d is positive in the interval (−ǫ, ǫ) by the previous
claim, and negative at the point t0 such that γ+c (t0) = p. Hence d must achieve a maximum
dmax = d(tmax) > 0. At the point γ+c (tmax), the curve γ+c is therefore tangent to the surface
V at distance dmax from Uλ1

(x0, N0). Again by Lemma 1.14, if d1 is such that λ1 = tan d1,
then V is an umbilical constant mean curvature convex surface, whose shape operator at
every point is tan(d1 − dmax)E. Denote λ2 = tan(d1 − dmax) and observe that λ2 < λ1.

By a similar argument as the previous claim, we compare the curve γ+c to the curve γ2,
which parameterizes the intersection of V with the timelike plane spanned by γ̇+c (tmax) and
N(γ+c (tmax)). We remark that in this case, γ2 is not a geodesic for V . Since tmax is a
maximum point, the curvature κ of γ+c at tmax needs to be smaller than the curvature κ2 of
γ2. But by the same computation,

κ2 ≥ λ21 ≥ λ22 ≥ λ22 − ||∇V
γ̇2
γ̇2||2 = κ22 .

x0

Figure 4.2. Lines of cur-
vature through x0 and the
surfaces U+

λ1
(x0, N0) and

U−

λ1
(x0, N0)

x0

p

γ+c (tmax)

Figure 4.3. The proof of
Lemma 4.8 is an argument
by contradiction.
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This gives a contradiction and thus concludes the proof. �

Remark 4.9. Clearly a statement analogous to Lemma 4.8 holds for the line of curvature
l−c (x0, a) which, under the same assumptions, is entirely contained below the concave um-
bilical surface U−

λ1
(x0, N0), tangent to S at x0, obtained as the surface at distance tanλ1 in

the future of a totally geodesic plane. See Figure 4.2.

4.3. Estimating the width from below. Observe that, in the extreme situation λ1 = 1,
the umbilical surfaces U+

1 (x0, N0) and U−
1 (x0, N0) have the following good property. Take

two timelike planes T1 and T2 which intersect orthogonally in the timelike geodesic through
x0, directed by the vector N0. Then U+

1 (x0, N0) ∩ T1 is a geodesic of U+
1 (x0, N0), and

U−
1 (x0, N0) ∩ T2 is a geodesic of U−

1 (x0, N0). The endpoints at infinity of U+
1 (x0, N0) ∩

T1 determine a spacelike entire line of AdS3, which is dual to the line determined by the
endpoints at infinity of U−

1 (x0, N0) ∩ T2. Hence the width of the convex hull of the four
points at infinity is π/2. Indeed, the curves U+

1 (x0, N0) ∩ T1 and U−
1 (x0, N0) ∩ T2 are lines

of curvature for a horospherical surface. See Figures 4.4 and 4.5. Roughly speaking, in this
subsection we want to quantify “how close” we get to this situation when λ(x0) (and thus
also λ1) approaches 1.

x0

p1
p2

q1

q2

Figure 4.4. We want to
estimate the timelike dis-
tance between the lines p1p2
and q1q2, where p1, p2, q1, q2
are endpoints of segments
on the lines of curvature.

x0

p1

p2

q1

q2

Figure 4.5. The configu-
ration is optimal on a horo-
spherical surface, when the
lines of curvature are planar
curves (and geodesics), and
p1p2 and q1q2 are dual lines.

Given a timelike totally geodesic plane T = w⊥ (where w ∈ R2,2 is a spacelike vector of
unit norm) and a point p ∈ AdS3, it is easy to see that |〈p, w〉| represents the hyperbolic sine
of the length of the spacelike segment pp0, such that p0 ∈ T and the line containing pp0 is
orthogonal to T at p0. If Tr denotes the (timelike) surface composed of points for which this
(signed) length is r, the following lemma gives an estimate on how the lines of curvature of
a maximal surface escape from the surfaces Tr. Here T = T0 is chosen as the timelike plane
orthogonal to the line of curvature at the base point x0.

Lemma 4.10. There exist constants δ ∈ (0, 1) and t0 ≥ 0 as follows. Let S be any max-
imal surface with λ(x0) = 1 − e−v(x0) ≥ δ, and let γc : [0, a] → AdS3 be a unit-speed
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parameterization of a line of curvature of S with γc(0) = x0, where a = v(x0)/2M . If
ϕ(t) = 〈γc(t), γ̇c(0)〉, then

ϕ(t) ≥ et

for all t ∈ [t0, a].

Proof. Let us compute

ϕ̇(t) = 〈γ̇(t), γ̇(0)〉 .
We now think γ(t) as a point of ÂdS3 ⊂ R2,2. Denote ψ(t) = 〈N(t), γ̇(0)〉, where we write
N(t) = N(γ(t)) by a slight abuse of notation. Hence

γ̈(t) = γ(t) + λ(γ(t))N(γ(t)) +∇S
γ̇(t)γ̇(t) ,

and therefore

ϕ̈(t) = ϕ(t) + λ(t)ψ(t) + 〈∇S
γ̇(t)γ̇(t), γ̇(0)〉 .

If we denote ρ(t) = ϕ̇(t) = 〈γ̇(t), γ̇(0)〉 and α(t) = 〈∇S
γ̇(t)γ̇(t), γ̇(0)〉, the triple (ϕ, ψ, ρ) solves

the (non-linear, non-autonomous) system of ODEs

(40)











ϕ̇(t) = ρ(t)

ψ̇(t) = λ(t)ρ(t)

ρ̇(t) = ϕ(t) + λ(t)ψ(t) + α(t)

,

with the initial conditions

(41)











ϕ(0) = 0

ψ(0) = 0

ρ(0) = 1

.

Sublemma 4.11. There exists δ ∈ (0, 1) such that, if λ(x0) ≥ δ, then

|α(t)| < e−v(x0)/4
√

1 + ϕ(t)2 + ψ(t)2 − ρ(t)2

for every t ∈ [0, v(x0)/2M ]. In particular, setting ǫ = e−v(x0)/4,

|α(t)| < ǫ (1 + |ϕ(t)|+ |ψ(t)|) .
Proof. Since γ is a unit-speed parameterization, (γ(t), N(t), γ̇(t),∇S

γ̇(t)γ̇(t)/||∇S
γ̇(t)γ̇(t)||) is

an orthonormal frame for every t, provided ∇S
γ̇(t)γ̇(t) 6= 0. Hence

γ̇(0) =− 〈γ̇(0), γ(t)〉γ(t)− 〈γ̇(0), N(t)〉N(t) + 〈γ̇(0), γ̇(t)〉γ̇(t) + 〈γ̇(0),∇S
γ̇(t)γ̇(t)〉

∇S
γ̇(t)γ̇(t)

||∇S
γ̇(t)γ̇(t)||2

=− ϕ(t)γ(t)− ψ(t)N(t) + ρ(t)γ̇(t) + α(t)
∇S

γ̇(t)γ̇(t)

||∇S
γ̇(t)γ̇(t)||2

.

Therefore one gets

1 = −ϕ(t)2 − ψ(t)2 + ρ(t)2 +
α(t)2

||∇S
γ̇(t)γ̇(t)||2

.

Recalling that, from Corollary 4.7, ||∇S
γ̇ γ̇|| ≤Me−v(x0)/2 < e−v(x0)/4 for δ sufficiently large,

one concludes the claim. �

By Corollary 4.6, λ(t) ≥ η := 1 − e−v(x0)/2 for t ∈ [0, v(x0)/2M ]. We will compare the
solution of the system (40) with the solution (ϕ1(t), ψ1(t), ρ1(t)) of the following system:

(42)











ϕ̇1(t) = ρ1(t)

ψ̇1(t) = ηρ1(t)

ρ̇1(t) = (1 − ǫ)ϕ1(t) + (η − ǫ)ψ1(t)− ǫ

,
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with the same initial conditions

(43)











ϕ1(0) = 0

ψ1(0) = 0

ρ1(0) = 1

.

Sublemma 4.12. Let (ϕ(t), ψ(t), ρ(t)) be the solution of (40),(41) and (ϕ1(t), ψ1(t), ρ1(t))
be the solution of (42),(43). For every interval t ∈ [0, t0) where ϕ(t), ψ(t) > 0, one has
ϕ(t) ≥ ϕ1(t).

Proof. The system (40) can be written in the form of integro-differential equation:

ρ̇(t) =

∫ t

0

ρ(s)ds+ λ(t)

∫ t

0

λ(s)ρ(s)ds + α(t) ,

while system (42) takes the form

ρ̇1(t) = (1 − ǫ)

∫ t

0

ρ1(s)ds+ (η − ǫ)

∫ t

0

ηρ1(s)ds− ǫ .

By Sublemma 4.11, as soon as ϕ(t), ψ(t) > 0 and t ∈ [0, v(x0)/2M ],

ρ̇(t) > (1− ǫ)

∫ t

0

ρ(s)ds+ (η − ǫ)

∫ t

0

ηρ(s)ds− ǫ .

Hence one gets

ρ̇(t)− ρ̇1(t) > (1− ǫ)

∫ t

0

(ρ(s)− ρ1(s))ds+ (η − ǫ)η

∫ t

0

(ρ(s)− ρ1(s))ds .

This is enough to conclude that ρ(t) > ρ1(t) for all t ∈ [0, t0). Indeed, if t = tmax were a
maximal point for which ρ(t) > ρ1(t), then ρ̇(tmax)− ρ̇1(tmax) would still be strictly positive,
thus giving a contradiction. As a direct consequence, ϕ(t) > ϕ1(t) for all t ∈ [0, t0). �

To conclude the proof of Lemma 4.10, it suffices to check by a direct computation that
the solution of (42) with initial conditions (43) is:





ϕ1(t)
ψ1(t)
ρ1(t)



 =





ǫ
1−ǫ+η(η−ǫ)

ηǫ
1−ǫ+η(η−ǫ)

0



+c1







1√
1−ǫ+η(η−ǫ)

η√
1−ǫ+η(η−ǫ)

−1






e−t

√
1−ǫ+η(η−ǫ)+c2







1√
1−ǫ+η(η−ǫ)

η√
1−ǫ+η(η−ǫ)

1






et
√

1−ǫ+η(η−ǫ) ,

where the constants are

c1 =
1

2

(

−1− ǫ
√

1− ǫ+ η(η − ǫ)

)

and

c2 =
1

2

(

1− ǫ
√

1− ǫ+ η(η − ǫ)

)

.

This shows in particular that

ρ1(t) = cosh(t
√

1− ǫ+ η(η − ǫ))− ǫ
√

1− ǫ+ η(η − ǫ)
sinh(t

√

1− ǫ + η(η − ǫ)) ,

and is therefore positive for all t ≥ 0 (since ǫ is small). Hence also ϕ1(t) ≥ 0 and therefore
ϕ(t) remains positive as well. Therefore the assumptions of Sublemma 4.12 are satisfied for
all t ∈ [0, v(x0)/2M ]. Hence there exists t0 > 0 such that

ϕ(t) ≥ ϕ1(t) ≥ et

for t ∈ [t0, a] as claimed. �
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x0

Tr

Figure 4.6. Lemma 4.10
asserts that the lines of cur-
vature escape from the re-
gion bounded by the surface
Tr.

x0

Figure 4.7. Lemma 4.14
instead quantifies how the
lines of curvature remain in-
side a thin slice bounded by
two timelike surfaces.

Remark 4.13. Using the same techniques as in Lemma 4.10, one can consider the function
ϕ(t) = 〈γc(t), w〉, where w is the unit spacelike vector orthogonal to both γ̇c(0) and to N(x0).
One then similarly defines ρ(t) = ϕ̇(t) = 〈γ̇(t), w〉 and ψ(t) = 〈γ(t), N(t)〉. Hence the triple
(ϕ, ψ, ρ) solves the system (40), now with the initial conditions

(44)











ϕ(0) = 0

ψ(0) = 0

ρ(0) = 0

.

Since λ ≤ 1, we consider the supersolution (ϕ2(t), ψ2(t), ρ2(t)) which solves the system:

(45)











ϕ̇2(t) = ρ2(t)

ψ̇2(t) = ρ2(t)

ρ̇2(t) = (1 + ǫ)ϕ2(t) + (1 + ǫ)ψ2(t) + ǫ

,

with the same initial conditions

(46)











ϕ2(0) = 0

ψ2(0) = 0

ρ2(0) = 0

.

The latter system is easily solved, since it is equivalent to the equation ρ̈(t) = 2(1 + ǫ)ρ(t),
and therefore one gets

ρ2(t) =
ǫ

√

2(1 + ǫ)
sinh(t

√

2(1 + ǫ))

and
ϕ2(t) = ψ2(t) =

ǫ

2(1 + ǫ)
(cosh(t

√

2(1 + ǫ))− 1)

as a solution to (45), (46). Recalling that, under the usual assumptions, we have ǫ =
e−v(x0)/4. Thus for t = a = v(x0)/2M , ϕ2(t) is dominated by an exponential of exponent

(v(x0)/4)(−1 + (2
√
2(1 + ǫ))/M), which is estimated from above by e−v(x0)/8 provided M

is sufficiently large (we can always replace M by a larger constant, as we did several times
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before). In conclusion, we get ϕ(a) ≤ ϕ2(a) ≤ e−t/8. Of course the situation is symmetric,
and one can prove the same upper bound for −ϕ(t).

We report here the statement of a lemma, which was discussed in Remark 4.13.

Lemma 4.14. There exists constans δ ∈ (0, 1) and t0 ≥ 0 as follows. Let S be any maximal
surface with future unit normal vector N0 at x0 and with λ(x0) = 1 − e−v(x0) ≥ δ, and
let γc : [0, a] → AdS3 be a unit-speed parameterization of a line of curvature of S with
γc(0) = x0, with a = v(x0)/2M . If ϕ(t) = 〈γc(t), w〉, where w is the unit spacelike vector
orthogonal to both γ̇c(0) and to N(x0), then

|ϕ(a)| ≤ e−v(x0)/8 .

To give an estimate from below for the width, we will consider a maximal surface with large
principal curvatures at the point x0, which we will assume to be the point x0 = [0, 0, 1, 0].
We are going to use again the coordinate system (15), which we write here again:

(r, θ, ζ) 7→ [cos θ sinh r, sin θ sinh r, cos ζ cosh r, sin ζ cosh r] .

We are assuming the maximal surface S is tangent at x0 to the plane ζ = 0. Hence the level
sets ζ = c are totally geodesic planes orthogonal to the timelike like which starts x0 with
initial tangent vector N(x0).

Lemma 4.15. Let a = v(x0)/2M and tan d1 = λ1 = 1 − e−v(x0)/4. Let p1 = γ+c (−a) and
p2 = γ+c (a) be the endpoints of the segment l+c (x0, a) of a line of curvature through x0. Then

| sin(d1 − ζ(pi))| ≤
sin d1

cosh(r(pi))
.

In other words, ζ(pi) ≥ ζ̄ where ζ̄ ≤ d1 satisfies

sin(d1 − ζ̄) =
sin d1

cosh(r(pi))
.

Proof. We know from Lemma 4.8 that l+c (x0, a) is entirely contained in the future-directed
side of the surface Uλ1

(x0, N0), for a = v(x0)/2M and λ1 = 1 − e−v(x0)/4. Recall that the
surface Uλ1

(x0, N0) is obtained as the surface at distance d1 (past-directed) from the plane
ζ = d1, where tand1 = λ1. This plane is also defined by

{ζ = d1} = [0, 0, sind1,− cosd1]
T .

Observe that the product of pi and [0, 0, sind1,− cosd1], in absolute value, is the sine of the
timelike distance of pi from the plane [0, 0, sind1,− cosd1]

T . Hence if (r(pi), θ(pi), ζ(pi)) are
the coordinates of pi, then

sin d1 ≥ |〈pi, [0, 0, sind1,− cosd1]〉|
= | sin d1 cos(ζ(pi)) cosh(r(pi))− cos d1 sin(ζ(pi)) cosh(r(pi))|
= | sin(d1 − ζ(pi))| cosh(r(pi)) .

from which the statement follows straightforwardly. �

Proof of Theorem 1.B. As observed earlier, we can assume that there exists a point x0 (and
we set x0 = [0, 0, 1, 0]) with λ(x0) ≥ δ. Composing with an isometry, we also assume that

(in the double cover ÂdS3) N0 = (0, 0, 0, 1) and that the tangent vectors to the lines of
curvature at x0 are γ̇+c (0) = (1, 0, 0, 0) and γ̇+c (0) = (0, 1, 0, 0). Let as usual p1 = γ+c (−a)
and p2 = γ+c (a) be the endpoints of the segment l+c (x0, a), and q1 = γ−c (−a) and q2 = γ−c (a)
be the endpoints of the segment l−c (x0, a), for a = v(x0)/2M . Recall also Figure 4.4.

The width w of the convex hull of S is at least the supremum of the length of geodesic
timelike segments which connect the spacelike segments p1p2 and q1q2, which we denote by
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x0

{ζ = ζ̄}
pi

Figure 4.8. In Lemma 4.15, the intersection of the surface Uλ1
(x0, N0) with the

cylinder which contains pi lies in the plane {ζ = ζ̄}.

dAdS3(p1p2, q1q2). Let (r(pi), θ(pi), ζ(pi)) the coordinates of pi and (r(qi), θ(qi), ζ(qi)) the
coordinates of qi. By Lemma 4.15, ζ(pi) ≥ ζ̄ and ζ(qi) ≤ −ζ̄, for i = 1, 2.

Hence dAdS3(p1p2, q1q2) is certainly larger than dAdS3(p
′
1p

′
2, q

′
1q

′
2), where p

′
i has coordinates

(r(pi), θ(pi), ζ̄) and q′i has coordinates (r(qi), θ(qi),−ζ̄). Compare also Figure 4.9. Indeed,
every timelike segment connecting p1p2 and q1q2 can be continued to a timelike segment
connecting p′1p

′
2 and q′1q

′
2 of larger timelike length.

Now, the segment p′1p
′
2 is clearly contained in the plane ζ = ζ̄, and it contains a point i+

with coordinates (r(i+), θ(i+) = π/2, ζ̄). See Figure 4.10. Therefore

i+ = [0, sinh r(i+), cos ζ̄ cosh r(i+), sin ζ̄ cosh r(i+)] .

Analogously, the segment q′1q
′
2 contains the point

i− = [sinh r(i−), 0, cos ζ̄ cosh r(i−),− sin ζ̄ cosh r(i−)] .

Hence one can give the following bound for the width w:

cosw ≤ |〈i+, i−〉| = 2 cosh r(i−) cosh r(i+) cos ζ̄ sin ζ̄ = cosh r(i−) cosh r(i+) cos(2ζ̄) ,

which is equivalent to

(tanw)2 =
1

(cosw)2
− 1 ≥ 1

(cos(2ζ̄))2
1

(cosh r(i+))2
1

(cosh r(i−))2
− 1 .

We now want to estimate the factors cos(2ζ̄) and cosh r(i+), cosh r(i−). For the former,
let us write ζ̄ = d1 − (d1 − ζ̄) and compute

(47) cos(2ζ̄) = cos(2d1) cos(2(d1 − ζ̄)) + sin(2d1) sin(2(d1 − ζ̄)) .

Recall that tan d1 = λ1 = 1− e−v(x0)/4, hence (cos d1)
2 = 1/(1 + λ21) and

(48) cos(2d1) = (cos d1)
2 − (sin d1)

2 =
1

1 + λ21
− λ21

1 + λ21
≤ 2(1− λ1) = 2e−v(x0)/4 .

For the second term of the RHS of Equation (47), using Lemma 4.15, we have

(49) sin(2(d1 − ζ̄)) = 2 sin(d1 − ζ̄) cos(d1 − ζ̄) ≤ 2 sind1
cosh r(pi)

.

Observe that

cosh r(pi) ≥ | sinh r(pi)| ≥ |〈pi, (1, 0, 0, 0)〉| = |〈pi, γ̇+c (0)〉| ≥ ev(x0)/2M ,
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where in the last step we have used Lemma 4.10 (up to changing the orientation of the pa-
rameterization γ+c for one of the two points pi). Therefore using the inequalities of Equations
(48) and (49) in (47), and relabeling M by a yet larger constant, we get

1

cos(2ζ̄)
≥ ev(x0)/M ,

provided λ(x0) is larger than the constant δ.
On the other hand, observe that r(i+) is the distance in the hyperbolic plane ζ = ζ̄ of

the point i+ from the geodesic defined by θ = 0. By the convexity of the distance function,
r(i+) is less than the maximum between the distance of p′1 and p′2 from the line θ = 0,
which remains bounded by Lemma 4.14 (see Remark 4.13). Actually, r(i+) tends to zero
as v(x0) → ∞, and the same holds for r(i−). Hence the factors cosh r(i+) and cosh r(i−)
remain bounded, and this concludes the proof that

tanw ≥ ev(x0)/M =

(

1

1− λ(x0)

)1/M

.

Hence, by a continuity argument, also the inequality

tanw ≥
(

1

1− ||λ||∞

)1/M

holds. �
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Figure 4.9. The width is
not increased when replac-
ing the points p1, p2, q1, q2
by p′1, p

′

2, q
′

1, q
′

2.

{ζ = ζ̄}

p′1
i+

p′2

q′1
i−

q′2

{ζ = −ζ̄}

Figure 4.10. The position
of the points i+ and i−,
which are used to derive the
lower bound on the width.

5. Application: minimal Lagrangian quasiconformal extensions

We begin this section by briefly introducing the theory of quasiconformal mappings and
universal Teichmüller space. Useful references are [Gar87, GL00, Ahl06, FM07]. Next, we
discuss the applications of Theorem 1.A, Theorem 1.B and Proposition 1.C, proving Theorem
2.A, Theorem 2.B, Theorem 2.C and Corollary 2.D.
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5.1. Quasiconformal mappings. We recall the definition of quasiconformal map.

Definition 5.1. Given a domain Ω ⊂ C, an orientation-preserving homeomorphism

f : Ω → f(Ω) ⊂ C

is quasiconformal if f is absolutely continuous on lines and there exists a constant k < 1
such that

|∂zf | ≤ k|∂zf | .
Let us denote µf = ∂zf/∂zf , which is called complex dilatation of f . This is well-defined

almost everywhere, hence it makes sense to take the L∞ norm. Thus a homeomorphism
f : Ω → f(Ω) ⊂ C is quasiconformal if ||µf ||∞ < 1. Moreover, a quasiconformal map as in
Definition 5.1 is called K-quasiconformal, where

K =
1 + k

1− k
.

It turns out that the best such constant K ∈ [1,+∞) represents the maximal dilatation of
f , i.e. the supremum over all z ∈ Ω of the ratio between the major axis and the minor axis
of the ellipse which is the image of a unit circle under the differential dzf .

It is known that a 1-quasiconformal map is conformal, and that the composition of a K1-
quasiconformal map and a K2-quasiconformal map is K1K2-quasiconformal. Hence com-
posing a quasiconformal map with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composition of two
quasiconformal maps f, g on Ω:

(50) µg◦f−1 =
∂zf

∂zf

µg − µf

1− µfµg
.

Using Equation (50), one can see that f and g differ by post-composition with a conformal
map if and only if µf = µg almost everywhere.

The connection between quasiconformal homeomorphisms of H2 and quasisymmetric
homeomorphisms of the boundary of H2 is made evident by the following classical theo-
rem (see [BA56]).

Ahlfors-Beuring Theorem. Every quasiconformal map Φ : H2 → H2 extends to a qua-
sisymmetric homeomorphism of RP1 = ∂H2. Conversely, any quasisymmetric homeomor-
phism φ : RP1 → RP1 admits a quasiconformal extension to H2.

5.2. Minimal Lagrangian extension. Our purpose is to give a quantitative description
of minimal Lagrangian extensions of a quasisymmetric homeomorphism φ.

Definition 5.2. A diffeomorphism Φ : H2 → H2 is minimal Lagrangian if Φ is area-
preserving and the graph of Φ is a minimal surface in H2 × H2.

The following characterization of minimal Lagrangian diffeomorphisms is well-known. A
proof can be found in [Tou15, Proposition 1.2.6].

Proposition 5.3. A diffeomorphism Φ : H2 → H2 is minimal Lagrangian if and only if
Φ∗(gH2) = gH2(b·, b·), where b ∈ Γ(End(TM)) is a bundle morphism such that:

• b is self-adjoint for gH2 ;
• det b = 1 ;
• d∇b = 0 .

Here d∇ is the exterior derivative, hence d∇b is the two-form defined by:

d∇b(v, w) = ∇ṽ(b(w̃))−∇w̃(b(ṽ))− b[ṽ, w̃] ,

where ṽ, w̃ are vector fields which extend the vectors v, w in a neighborhood of the base
point. The vanishing of d∇b is the so-called Codazzi condition.
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In [BS10], entire maximal surfaces of uniformly negative curvature were used to prove the
following theorem:

Theorem 5.4 ([BS10, Theorem 1.4]). For every quasisymmetric homeomorphism φ : RP1 →
RP1, there exists a unique quasiconformal minimal Lagrangian extension ΦML : H2 → H2.

The key observation is that the maximal surface with ∂∞S = gr(φ) corresponds to the
minimal Lagrangian extension ΦML of φ. The extension is given geometrically in the fol-
lowing way. Fix a totally geodesic plane P in AdS3, which is a copy of hyperbolic plane.
Given a point x ∈ S, we define two isometries Φx

l ,Φ
x
r ∈ Isom(AdS3) which map the tangent

plane TxS to P . The first isometry Φx
l is obtained by following the left ruling of ∂∞AdS3.

Analogously Φx
r for the right ruling. This gives two diffeomorphisms Φl and Φr from S to

P , by

Φl(x) = Φx
l (x) , Φr(x) = Φx

r (x) .

The diffeomorphism Φ is then defined as

ΦML = (Φl)
−1 ◦ Φr .

In [KS07, Lemma 3.16] it is shown that the pull-back of the hyperbolic metric h of P on S
by means of Φr and Φl is given by

(51) Φ∗
l h = I((E + JB)·, (E + JB)·) ,

and

(52) Φ∗
rh = I((E − JB)·, (E − JB)·) ,

where I is the first fundamental form of S, J is the almost-complex structure of S, B the
shape operator and E the identity. We are now ready to give a relation between the principal
curvatures of S and the quasiconformal distortion of Φ:

Proposition 5.5. Given a maximal surface S in AdS3, the quasiconformal distortion of the
minimal Lagrangian map Φ : H2 → H2 at a point y ∈ H2 is given by

K(y) =

(

1 + |λ(x)|
1− |λ(x)|

)2

,

where y = (Φl)(x). Therefore, by taking K(ΦML) = supyK(y), namely K(ΦML) is the
maximal dilatation of Φ, the following holds:

K(ΦML) =

(

1 + ||λ||∞
1− ||λ||∞

)2

.

Proof. Let h be the hyperbolic metric of P ; it follows from Equations (51) and (52) that

Φ∗h = h((E + JB)−1(E − JB)·, (E + JB)−1(E − JB)·).
The quasiconformal distortion of Φ at a fixed point x can be computed as the ratio between
sup ||Φ∗(v)|| and inf ||Φ∗(v)|| where the supremum and the infimum are taken over all tangent
vectors v ∈ TxP with ||v|| = 1. Since B is diagonalizable with eigenvalues ±λ, (E +
JB)−1(E − JB) can be diagonalized to the form

(1−λ
1+λ 0

0 1+λ
1−λ

)

.

Hence, assuming 0 < λ(x) < 1, the quasiconformal distortion is given by

K(Φl(x)) =

(

1 + λ(x)

1− λ(x)

)2

,

as claimed. �

We are now ready to prove Theorem 2.A.
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Theorem 2.A. There exist universal constants δ and C1 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian
extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C1||φ||cr .

Proof. Putting together the inequalities in Proposition 3.A, Theorem 1.A and Proposition
5.5, we obtain the following inequality:

(53) K(Φ) ≤
(

1 + C1 tanw

1− C1 tanw

)2

≤
(

1 + C1 sinh(
||φ||cr

2 )

1− C1 sinh(
||φ||cr

2 )

)2

.

Clearly, the inequality (53) holds provided ||φ||cr is sufficiently small so that 1−C sinh( ||φ||cr2 ) >
0. Since

d

dx

∣

∣

∣

∣

x=0

ln

(

1 + C1 sinh(
x
2 )

1− C1 sinh(
x
2 )

)2

= 2C1 ,

the claim is proved, by appropiatly choosing the constant (which depends on the choice of
δ, and is still called C1) . �

We now move to the proof of Theorem 2.B.

Theorem 2.B. There exist universal constants ∆ and C2 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr > ∆, the minimal Lagrangian
extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C2||φ||cr .

Proof. By Theorem 1.B, we have

1

1− ||λ||∞
≤ (tanw)M

and therefore

||λ||∞ ≤ 1− 1

(tanw)M
.

By Proposition 5.5, if K is the maximal dilatation of ΦML, then

(54) K1/2 =
1+ ||λ||∞
1− ||λ||∞

≤
2− 1

(tanw)M

1
(tanw)M

= 2(tanw)M − 1 .

Finally, using Proposition 3.A,

K1/2 ≤ 2

(

sinh

( ||φ||cr
2

))M

− 1 .

Therefore one gets

lnK ≤ 2 ((M/2)||φ||cr + ln 2) ≤ C2||φ||cr ,
choosing the constant C2 sufficiently large, under the (repeatedly used) assumption that
||λ||∞ is larger than a constant δ (and thus K is larger than some universal constant K0 >
1). �

Finally, by using the inequalities in Proposition 3.A, Proposition 1.C and Proposition 5.5,
we obtain the following estimate:

||φ||cr ≤ 2 ln

(

(
√
K + 1−

√
2)(

√
K + 1 +

√
2)

(
√
K − 1 +

√
2)(1 +

√
2−

√
K)

)

,
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which clearly holds if the quasiconformal coefficientK = K(ΦML) of the minimal Lagrangian

extension ΦML : D → D is in [1, (1 +
√
2)2). Let us observe that the function

K 7→ 2 ln

(

(
√
K + 1−

√
2)(

√
K + 1 +

√
2)

(
√
K − 1 +

√
2)(1 +

√
2−

√
K)

)

is differentiable with derivative at 0 equal to 2. Hence the following holds:

Theorem 2.C. There exist universal constants δ and C0 such that, for any quasisymmet-
ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian
extension Φ : H2 → H2 has maximal dilatation bounded by:

C0||φ||cr ≤ lnK(ΦML) .

The constant C0 can be taken arbitrarily close to 1/2.

In particular, any constant C satisfying the statement of Theorem 2.A cannot be smaller
than 1/2.

Corollary 2.D. There exists a universal constant C such that, for any quasisymmetric
homeomorphism φ of RP1, the minimal Lagrangian extension ΦML : H2 → H2 has maximal
dilatation K(ΦML) bounded by:

lnK(ΦML) ≤ C||φ||cr .
Proof. In light of Theorem 2.A and Theorem 2.B, it will be sufficient to prove that there
exists a constant K0 such that lnK(ΦML) ≤ K0 for all quasisymmetric homeomorphisms φ
with δ ≤ ||φ||cr ≤ ∆. To prove this, suppose by contradiction that there exists a sequence
φn with δ ≤ ||φn||cr ≤ ∆ such that the corresponding minimal Lagrangian extensions have
maximal dilatationKn → ∞. Therefore one can pick a sequence of points xn on the maximal
surface Sn (where of course ∂∞Sn = gr(φn)) such that the (positive) principal curvature
λn(xn) tends to 1 as n→ ∞.

By composing with isometries of AdS3, we can assume xn is a fixed point x0 and all
surfaces Sn are tangent to the same plane through x0. Indeed, composing with elements
of PSL(2,R) does not change the cross-ratio norm of φn. By Lemma 1.20 there exists a
subsequence nk such that the maximal surfaces Snk

converge C∞ on compact sets to an
entire maximal surface S∞ of nonpositive curvature. Using Theorem 1.21 there exists a
further subsequence nkj

such that φnkj
converges to a quasisymmetric homeomorphism φ∞.

Moreover (see also Remark 1.22), S∞ has asymptotic boundary ∂∞S∞ = gr(φ∞). But by
the C∞ convergence, the principal curvatures of S∞ at x0 are 1 and −1. By Lemma 1.12,
S∞ is a horospherical surfaces and this gives a contradiction. �
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