Merging of Native and Non-native Speech for Low-resource Accented ASR
Résumé
This paper presents our recent study on low-resource automatic speech recognition (ASR) system with accented speech. We propose multi-accent Subspace Gaussian Mixture Models (SGMM) and accent-specific Deep Neural Networks (DNN) for improving non-native ASR performance. In the SGMM framework, we present an original language weighting strategy to merge the globally shared parameters of two models based on native and non-native speech respectively. In the DNN framework, a native deep neural net is fine-tuned to non-native speech. Over the non-native baseline, we achieved relative improvement of 15 % for multi-accent SGMM and 34 % for accent-specific DNN with speaker adaptation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...