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Abstract. This paper presents our recent study on low-resource
automatic speech recognition (ASR) system with accented speech. We
propose multi-accent Subspace Gaussian Mixture Models (SGMM) and
accent-specific Deep Neural Networks (DNN) for improving non-native
ASR performance. In the SGMM framework, we present an original
language weighting strategy to merge the globally shared parameters
of two models based on native and non-native speech respectively. In the
DNN framework, a native deep neural net is fine-tuned to non-native
speech. Over the non-native baseline, we achieved relative improvement
of 15% for multi-accent SGMM and 34% for accent-specific DNN with
speaker adaptation.

Keywords: automatic speech recognition, cross-lingual acoustic
modelling, non-native speech, low-resource system, multi-accent
SGMM, accent-specific DNN

1 Introduction

Performance of non-native automatic speech recognition (ASR) is poor when few
(or no) non-native speech is available for training / adaptation. Many approaches
have been suggested for handling accented-speech in ASR, such as acoustic model
merging ([16], [2], [22], [23]), applying maximum likelihood linear regression
(MLLR) for adapting models to each non-native speaker [8], or adapting lexicon
([1], [4]).

Lately, Subspace Gaussian Mixture Models (SGMMs) ([17], [18]) have shown
to be very promising for ASR in limited training conditions (see [13] and [11]).
In SGMM modelling, the acoustic units are all derived from a common GMM
called Universal Background Model (UBM). This UBM, which in some way
represents the acoustic space of the training data, can be estimated on large
amount of untranscribed data from one or several languages. The globally shared
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parameters do not need the knowledge about the phone units used in the source
language(s). Without this constraint of source-target mapping of acoustic units,
the UBM can be well used in cross-lingual or multilingual (multi-accent) settings.

In the mean time, Deep Neural Networks (DNNs) have been increasingly
employed for building efficient ASR systems. HMM/DNN hybrid systems clearly
outperform HMM/(S)GMM systems for many ASR tasks [6] which include
dealing with low-resource systems ([14], [25], [9]). Several studies have shown that
multilingual DNNs can be achieved by utilizing multilingual data for conducting
unsupervised pretraining [21] or training the whole network simultaneously ([9],
[25], [5]).

In the above techniques, acoustic model merging can easily be conducted
through sharing the UBMs (for SGMM) and hidden layers (for DNN) with other
systems. But what is the optimal way to do so? Can we merge a large amount
of native speech with a small quantity of non-native data? This paper tries to
respond to these questions using both SGMM (less efficient than DNNs but more
compact for embedded applications) and DNN (state-of-the-art) frameworks. We
apply our methods to Malaysian English ASR, where a large amount of native
(English) data is available (TED-LIUM corpus [20]), while only 2h of non-native
speech is available. More precisely, we propose one strategy for each framework:
(1) language weighting for multi-accent SGMMs and (2) accent-specific top layer
for DNN. The first strategy is novel and involves manipulating the number of
Gaussians of each native / non-native model for (multi-accent) UBM merging. In
the second approach, we build accent-specific DNN similarly to last year’s work
of [10] but we make it work for a very low-resource setting and with speaker
adaptation on top of it.

The rest of the paper is organized as follows. In Section 2 we describe the
background of SGMM and DNN as well as their application to multilingual and
multi-accent ASR. Section 3 presents the experimental setup for building native
and non-native systems as well as the results of our baselines. In Section 4 and
5, we describe the proposed strategies and show their benefits to low-resource
accented ASR. Last but not least, Section 6 concludes this paper.

2 Background of acoustic modelling for cross-lingual or
accented ASR

2.1 Subspace Gaussian Mixture Models

The GMM and SGMM acoustic models are similar since each emission
probability of each HMM state is modelled with a Gaussian mixture model.
However, in the SGMM approach, the Gaussian means and mixture component
weights are generated from the phonetic and speaker subspaces along with a set
of weight projections. For SGMM, the state probabilities are defined following
the equations below [18]:

p(x|j) =

Mj∑
m=1

cjm

I∑
i=1

wjmiN (x;µjmi,Σi) (1)
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µjmi = Mivjm, (2)

wjmi =
exp wT

i vjm∑I
i′=1 exp wT

i′ vjm

(3)

where x ∈ RD denotes the D-dimensional feature vector, j ∈ {1..J} is the
HMM state, i is the Gaussian index, m is the substate and cjm is the substate
weight. Each state j is associated to a vector vjm ∈ RS (S is the phonetic
subspace dimension) which derives the means, µjmi and mixture weights, wjmi,
I is the number of Gaussians for each state. The phonetic subspace Mi, weight
projections wT

i and covariance matrices Σi, i.e., the globally shared parameters
Φi = {Mi,w

T
i ,Σi} are common across all states.

These parameters can be shared and estimated over multiple language data.
[13] and [11] presented cross-lingual and multilingual work using SGMM for
improving ASR with very limited training data. In both studies, the cross-lingual
approach was carried out by porting the UBM which was trained using source
language data, to SGMM training of target language. Basically, the SGMM
model was derived from the UBM of source language. For the second approach,
the strategy involved training UBM using more than one language data and
then employed the multilingual UBM for SGMM training of a specific language.
Applying both methods improved ASR performance of monolingual system.

This idea motivates us to investigate a multi-accent approach using this
framework. We propose to build SGMM models which are derived from merged
UBMs, rather than carrying out the SGMM training in a multilingual fashion
(see studies on non-native SGMM in [15], [24]). The method is particularly
appealing if one wishes to consider borrowing UBMs of other systems. Our
strategy and experiments are described in Section 4.

2.2 Deep Neural Networks

Deep Neural Network (DNN) for ASR is a feedforward neural network with
hidden layers. Mathematically, each output (node) of the l-th layer of a DNN
can be defined as

xl = σ(bl + Wlxl−1), for 1 ≤ l < L (4)

where Wl is the connection weight from xl and xl−1, the output of the (l−1)-th
layer, while bl is the bias. The hidden output xl is a sigmoid function defined
as σ(x) = (1 + exp(−x))−1. The last (L-th) layer of the DNN uses a softmax
function to obtain the posterior probability of each HMM state j given the
acoustic observation ot at time t:

p(j|ot) =
exp(xL)

Σj′exp(xL)
. (5)

Optimizing hidden layers can be done by pretraining the network using
Restricted Boltzmann Machines (RBM) [7]. The generative pretraining strategy
builds stacks of RBMs corresponding to the number of desired hidden layers
and provides better starting point (weights) for DNN fine-tuning through
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backpropagation algorithm. Pretraining a DNN can be carried out in a
unsupervised manner because it does not involve specific knowledge (labels,
phone set) of a target language1. Only the softmax layer is sensitive to the
target language. It is added on top of the hidden layers during fine-tuning and
its ouput corresponds to the HMM states of the target language.

As shown in [21], using untranscribed data for RBM pretraining as
a multilingual strategy has little effect on improving monolingual ASR
performance. The transfer learning [5] approach has shown large recognition
accuracy improvements. The method involves removing the top layer of a
multilingual DNN and fine-tuning the hidden layers to a specific language.

Recently, a multi-accent DNN with accent specific softmax layer has been
proposed for improving decoding performance of English ASR for British and
Indian accents [10]. The accent adaptation approach yielded better decoding
results compared to non-adapted DNNs. Another attempt to improve ASR
performance on non-native task was done by [3] for Mandarin language. They
also proved the interest of adapting non-native accents over the baseline DNN
model.

In this paper, we investigate a method similar to [10] to build the
accent-specific network models, but we apply it in a very low-resource setting.
Previously, the method has been tested with larger amount of non-native speech
(x10 or x100 compared to our experimental conditions). Hence, we try to measure
the effectiveness of the approach when the ratio between non-native data and
native data is largely unbalanced. In addition, we develop a strategy to handle
cross-lingual DNNs with different feature transforms for speaker adaptation.

3 Experimental Setup

The ASR experiments were conducted on Kaldi speech recognition toolkit
[19]. This section reports non-native and native speech databases used in our
investigation. Besides that, we present the baseline results for non-native ASR
based on GMM, SGMM and DNN.

3.1 Data

The non-native speech corpus contains 15h of English speech spoken by 24
Malaysians (of Malay, Chinese and Indian origin). The data were collected by
Universiti Sains Malaysia for conducting research on acoustic model merging
for ASR (see [23] for more details). Table 1 shows the amount of data used to
train and evaluate the non-native ASR. We employed 2h of transcribed data for
training the system and evaluate its performance on 4h of transcribed speech. For
SGMM training, 9h of untranscribed data were added to the 2h of transcribed
speech to build the UBM. Our system used the CMU pronunciation dictionary
(no non-native adaptation of the lexicon) which has more than 100k words.

1 In that sense, RBM pretraining (for DNN) and UBM training (for SGMM) are both
unsupervised methods to get an initial representation of the acoustic space before
modelling the speech units
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Furthermore, we used a trigram language model for decoding. The model was
trained on news data, taken from a local English news website2. After evaluating
the LM on the test transcription data, the LM perplexity is 189 while the OOV
rate is 2.5%.

Table 1. Statistics of the non-native speech data for ASR.

Train Test
Untranscribed Transcribed

9h 2h 4h

To obtain a baseline for native ASR, we used the first release of TED-LIUM
[20] corpus3. The transcriptions of this corpus were generated by the Laboratoire
d’Informatique at Université du Maine (LIUM) for the International Workshop
on Spoken Language Translation (IWSLT) evaluation campaign in 2011. The
corpus contains speeches that were excerpted from video talks of the TED
website. We used 118h to train the system and 4h for evaluation. Besides
that, we used a pronunciation dictionary which was included in the package.
For decoding, we used a trigram language model which was built on TED and
WMT11 (Workshop on Machine Translation 2011) data. The model perplexity
is 220 after estimation on the test data.

3.2 Baseline systems

For the non-native ASR system, we trained a triphone acoustic model (39 MFCC
with deltas and deltas deltas) using 776 states and 10K Gaussians. Then, we
trained SGMM using the same decision trees as in the previous system. The
SGMM was derived from a UBM with 500 Gaussians and phonetic subspace
dimension was S = 40. The UBM was trained on 11h data. We built a DNN
based on state-level minimum Bayes risk [12] (sMBR) and the network had 7
layers, each of the 6 hidden layers had 1024 hidden units. The network was
trained from 11 consecutive frames (5 preceding and 5 following frames) of the
same MFFCs as in the GMM system. Besides that, the same HMM states were
used as targets of the DNN. The initial weights for the network were obtained
using Restricted Boltzmann Machines (RBMs) that resulted in a deep belief
network with 6 stacks of RBMs. Fine tuning was done using Stochastic Gradient
Descent with per-utterance updates, and learning rate 0.00001 which was kept
constant for 4 epochs. To run our DNN experiments, we utilized a GPU machine
and CUDA toolkit to speed up the computations.

For the native ASR system, we built a triphone acoustic model with 3304
states and 40K Gaussians. Subsequently, we built SGMM system using the same
decision trees and 500 UBM Gaussians. Lastly, we trained a DNN with 7 layers

2 http://www.thestar.com.my/
3 We are aware that TED-LIUM is not a truly native English corpus (non-native

speakers of multiple origins) but we consider here that the corpus permit to build
an efficient system to decode native English ASR. Thus, in this paper we call it
“excessively” a native corpus.
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using the same setting for building non-native DNN. The three systems were
evaluated on native speech (TED task) and we achieved the following WER
results: 30.55% for GMM, 28.05% for SGMM and 19.10% for DNN.

Table 2. Word error rates (WER %) of ASR with non-native (2h) and native (118h)
acoustic models on the non-native evaluation data (4h test) - same pronunciation
dictionary and language model for both system.

Acoustic Models Non-native Native

GMM 41.47 57.09
SGMM 40.41 45.84
DNN 32.52 40.70

Table 2 presents the baseline results of systems that used non-native and
native acoustic models, evaluated on accented speech. For non-native acoustic
modelling, SGMM and DNN systems outperformed the GMM system. The
systems gave 3% and 22% relative improvement, respectively. Using these
non-native models (trained on 2h only!) to decode non-native speech resulted
lower word error rate (WER) compared to the pure native ASR systems (trained
on 118h). In the following sections, we try to take advantage of both corpora
(large native and small non-native) by merging acoustic models (or data)
efficiently.

4 Language weighting for multi-accent Subspace
Gaussian Mixture Models

4.1 Proposed Method

In SGMM, the system is initialized by a Universal Background Model (UBM)
which is a mixture of full-covariance Gaussians. This single GMM is trained on
all speech classes that are pooled together. The advantage of this model is that
it can be trained on large amount of untranscribed data or multiple languages,
as shown in [13] for cross-lingual SGMM in low-resource conditions. The authors
showed that the SGMM global parameters are transferable between languages,
especially when the parameters are trained in multilingual fashion. Thus, this
gives an opportunity for low-resource systems to borrow UBM trained from other
sources.

Figure 1 illustrates the process of UBM merging through language weighting.
The first step is to choose a language weight, α to L1 in order to determine the
number of Gaussians to be kept for merging ((1−α) is given to L2). Intuitively,
a larger α should be given to the less represented source data. Then, we use data
that are representative of the ASR task in order to find the top αN Gaussians in
L1 UBM using maximum likelihood criterion. The same process is done for the
L2 UBM but only (1-α)N Gaussians are selected. The final step applies weight
normalization before merging all the Gaussians in a single GMM. The final UBM
should have the same number of Gaussians if both initial UBMs are the same
size.
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UBM (L1) 

N Gaussians 

Gaussian 
selection 

Target 
language 

data 

Gaussian 
selection 

αN Gaussians 

Weight 
normalization + 

merging 

Final UBM 
(L1-L2) 

UBM (L2) 

N Gaussians 
(1-α)N Gaussians 

αL1+(1-α) L2 

Fig. 1. An Illustration of UBM merging through language weighting

For experiments, we built a multi-accent UBM by merging native and
non-native models using our language weighting strategy. To implement this,
we used UBM of native speech (trained on 118h) and UBM of non-native speech
(trained on 11h). Each of the UBMs has 500 Gaussians. Using the two models,
we employed the language weighting approach for obtaining several multi-accent
UBMs. Thereafter, these UBMs were used to estimate the parameters of
non-native SGMM systems. Subsequently, we trained multi-accent SGMMs with
different numbers of substates, ranging from 800 to 8750. By doing this, we
obtained several SGMMs for each multi-accent UBM applied. We summarize our
results by reporting only the highest (maximum), average and best (minimum)
SGMM results, as shown in Figure 2.

4.2 Results

Our findings show that using the proposed strategy resulted in significant
improvement from the SGMM baseline. We reach the lowest WER when the
SGMM system was obtained from a multi-accent UBM with 250 Gaussians
from native and 250 Gaussians from non-native (α = 0.5, WER=37.71%). This
result proves that carefully controlling the contribution of two (unbalanced)
data as sources for UBM training is a way to optimize ASR performance. In
this experiment, the optimal α obtained tells us that non-native (Malaysian)
data (in small quantity but very representative of the ASR task) and native
(TED-LIUM) data (bigger corpus with speaker diversity) contribute equally to
the acoustic space representation.

Furthermore, we did not gain WER improvements when the amount of
substates increased. The minimum WERs shown in the figure are results for
SGMMs with 800 substates. We extended our investigation to evaluate ASR
performance for very compact (smaller number of Gaussians) UBM. The UBM
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Fig. 2. Min, max and average performance ( WER (%) ) of multi-accent SGMM based
on language weighting strategy for non-native ASR (4h test). Note: non-native (L1)
native (L2) and α = 0.1, ..., 0.9.

was built with only 50 Gaussians using native/non-native data and then we
applied the same language weighting strategy to obtain multi-accent UBMs.

Table 3. A summary of results from the SGMM experiments on the non-native ASR
(4h test). Different UBMs were employed for building SGMM with 2h of non-native
training data.

SGMM WER (%)

Non-native UBM500 40.41 (baseline)
Native UBM500 41.13
For α = 0.5,
a. Multi-accent UBM500 37.71
b. Multi-accent UBM50 34.24

The non-native system significantly improved after applying this method.
Table 3 shows the comparison between multi-accent SGMM with UBM=500
and UBM=50. For α = 0.5, the new multi-accent SGMM outperformed the one
with more UBM Gaussians by 9% relative improvement on the WER. The result
shows that deriving SGMM from a compact UBM gives better performance in
very low-resource conditions. We also tried even smaller UBM but the WERs
started to go back up (39.85% for UBM with 5 Gaussians!).
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5 Accent-specific top layer for DNN

5.1 Proposed Method

Figure 3 illustrates the training process for obtaining an accent-specific DNN.
We began with a network that was fine-tuned on native speech (last line and
last column in Table 2). Then, we removed the softmax layer of native (source)
DNN. Subsequently, a new softmax layer was added through fine-tuning the
whole network on the non-native (target) training data. For this condition, we
built the DNN on the GMM baseline for non-native.

Softmax layer with 
non-native data 

Accent-specific DNN Native DNN 

Transferable 
hidden layers 

Softmax layer with 
native data 

Fig. 3. Process of obtaining accent-specific DNN (right) using hidden layers of native
DNN

We also built a second system for evaluating this approach. The system was
speaker adapted and built upon new HMM/GMM acoustic models. First, we
trained new native and non-native triphone models on new feature vectors using
linear discriminant analysis (LDA) and maximum likelihood linear transform
(MLLT), as well as speaker adaptive training using feature-space maximum
likelihood linear regression (fMLLR). One important trick is to use feature
transforms that were acquired from the native corpus (with large number of
speakers), during LDA+MLLT training of non-native system. If not done this
way, we observed no improvement with speaker adaptation (merging non-native
and native DNNs with different feature transforms is not good). Then, we trained
DNN for native and later we removed the top layer of the model. Subsequently,
we fine-tuned the remaining DNN layers on the non-native data.

5.2 Results

We tested the DNNs on the same non-native evaluation data (4h test). Table
4 presents our findings. Both results are significantly better than the pure
non-native DNN baseline (last line in Table 2). For example, we achieved 24%
and 34% relative improvement respectively over the non-native DNN baseline
(32.52%). Thus, the hidden layers of the native DNN proved to be useful for
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Table 4. WERs of accent-specific DNN on the non-native ASR task (4h test).

DNN with accent-specific top layer WER (%)

a. No speaker adaptation 24.89
b. Speaker adaptation 21.48

improving the low-resource non-native ASR. Besides that, our approach for
building DNN with speaker adaptation and accent-specific top layer provided
the best result. We obtained 14% relative improvement over the accent-specific
DNN without speaker adaptation.

6 Conclusions

We have proposed two approaches for optimal merging of native and non-native
data in order to improve accented ASR with limited training data. The first
approach introduced a language weighting strategy for constructing multi-accent
compact SGMM acoustic models. In this approach, we used language weights to
control the number of Gaussians of each UBM involved in the merging process.
Improvement of the ASR performance was observed with language weighting.
The second approach involved fine-tuning the hidden layers of native DNN on the
non-native training data. We applied this approach for obtaining accent-specific
DNN with and without speaker adaptation. For the former, we trained the
DNN on HMM/GMMs that had feature transforms of the native speech data.
Both DNNs outperformed the DNN baseline. Overall, the approaches used in
this study resulted in encouraging improvement in WER. Over the non-native
baseline, we achieved relative improvement of 15% for SGMM (multi-accent
UBM50) and 34% for DNN (accent-specific with speaker adaptation).
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