Fractional Sobolev Spaces and Functions of Bounded Variation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Fractional Sobolev Spaces and Functions of Bounded Variation

Résumé

We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space BV of functions of bounded variation, whose derivatives are not functions but measures and the space SBV, say the space of bounded variation functions whose derivative has no Cantor part. We prove that SBV is included in W^{s,1} $ for every s \in (0,1) while the result remains open for BV. We study examples and address open questions.
Fichier principal
Vignette du fichier
BVfracHAL.pdf (320.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01287725 , version 1 (14-03-2016)
hal-01287725 , version 2 (21-06-2017)

Identifiants

  • HAL Id : hal-01287725 , version 1

Citer

Maïtine Bergounioux, Antonio Leaci, Giacomo Nardi, Franco Tomarelli. Fractional Sobolev Spaces and Functions of Bounded Variation . 2016. ⟨hal-01287725v1⟩
276 Consultations
4576 Téléchargements

Partager

More