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Fractional Sobolev Spaces and Bounded Variation Functions

M. Bergounioux*, A. Leacif, G. Nardit

March 14, 2016

Abstract

In this paper, we investigate the 1D Riemann-Liouville fractional derivative to
make the connection between the so called fractional Sobolev spaces and the classi-
cal spaces of functions of bounded variation whose derivatives are not functions but
measures, BV and SBV.

1 Introduction

The aim of this work is to investigate the fractional derivative concepts and make the
connection between the related (so called fractional) Sobolev spaces and the spaces of
functions of bounded variation whose derivatives are not functions but measures. There
are two main definitions of fractional differentiation whose connections are not clear (to
our knowledge). The fractional derivative in the sense of Gagliardo is not explicitely
defined (almost everywhere for example) but through the setting of fractional Sobolev
Spaces and the underlying norm. It is, in some sense, a global definition which can be
easily handled via the Fourier transform. The second approach is based on the Riemann-
Liouville fractional derivative (in short RL) and may be pointwise defined. We choose to
focus on the RL derivative : there are many variants of the fractional derivatives/integrals
definition as the Grunwald-Letnikov, Caputo, Weyl ones [8, 9, 17] but the RL derivative
can be considered as a generic one. For a complete study of these derivatives one can
refer to the book by Samko and al. [20]. Moreover, in [23], the connection is made with
metric and measure spaces, in particular the Hausdorff measure. We decided to use this
derivative concept because it seems more adapted to applications than the Gagliardo one.
The RL derivative is widely used by physicists [25, 26], in automatics, control theory and
image processing as well, especially to deal with image enhancement and texture analysis
(see [18] for example); in [16] calculus of variations problem where the cost functional
involves fractional derivative are investigated. Nevertheless, the context is often a discrete
one and there is not much analysis (to our knowledge) in the infinite dimensional setting.
In particular, the link between the classical spaces of bounded variation functions and
the fractional Sobolev spaces is not clear. The paper by Schmitt and Winkler[21] seems
to be a pioneer work to compare the BV space and the fractional Sobolev spaces (in the
Gagliardo sense but not in the RL sense). Indeed, the concept of fractional Sobolev spaces
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is not much developed for the RL derivative. One can refer to [6, 14, 15] however. Here we
consider the 1D case and the paper is organized as follows: next section is devoted to the
presentation of the two main approaches with a special focus on the Riemann-Liouville
fractional derivative. We recall the main usual tools in this section. In section 3, we define
RL-fractional Sobolev spaces W*1(a,b) and give basic properties. In the last section, we
perform a comparison between these fractional Sobolev spaces and the classical spaces BV

and SBV. In particular we prove that SBV ¢ (| W*'and [\ W'\ BV # 0.
s€(0,1) s€(0,1)

2 Fractional Calculus and Fractional Sobolev Spaces

In this section we present the two main (different) definitions of fractional Sobolev spaces
that we can find in the literature. We are in particular interested to the case where the
differentiation order is s € [0,1) in order to study the fractional spaces between L' and
W1 and their relationship with BV. We recall that

Whl(a,b) == {u € L' (a,b) | v’ € L'(a,b) } .
In the sequel, we consider the 1D framework; therefore
Whl(a,b) c C(a,b),
the space of continuous functions on [a, b] (see [2, 5] for example) and
Yu € Whi(a,0),%y € [a,b]  Jullze < Ju(y)l + [lu] 1 -
2.1 Gagliardo’s fractional Sobolev Spaces
This section is devoted to recalling the classical definition of fractional Sobolev spaces:

Definition 2.1 (Gagliardo’s spaces) Let s € (0,1). For any p € [1,+00) we define the
following space:

Wé’p(a, b) = {u € LP(a,b) : w € LP([a,b] x a, b])} . (2.1)
x — Y|P

This is a Banach space endowed with the norm

1

()P !
ullywspgp = )|Pdx +/ / ——————dxdy| .
el @ [/[a ?) [a,8] J[a,b] |$—y|1+5p

WEP(a,b) is an intermediary space between LP(a,b) and W'P(a,b) and the term

= | [ [ : .
a T .
Weh(ab) = [a,b] J[a,b] ’l‘ - y’1+sp Y

is the so-called Gagliardo semi-norm of u. We have in particular

WEP(a,b) C WEP(a,b) ¥V 0<s <s<1.



If s=m+k>1withm €N, ke[0,1], such a definition can be generalized to higher
orders by setting

WP (a,b) = {u € W™P(a,b) : D"™u € W"P(a,b)}.

This point of view is quite related to interpolation theory (see [2, 4, 10, 13, 22, 24] for
example). Note that we are not interested in Hilbert framework so that a Fourier defini-
tion is useless here. There is a huge literature concerning these fractional differentiation
methods that we cannot mention here.

2.2 Fractional integration and differentiation theory

Another point of view to deal with fractional derivatives is the one we describe in the
sequel: the generic definition is the Riemann-Liouville one, though there are many variants
that we do not consider. The point of view is different from the Gagliardo one. More
precisely, we get a pointwise definition using fractional integrals while the Gagliardo’s
fractional Sobolev Spaces are defined by interpolation and global approach. As we already
mentioned it, we decide to focus on this second type which seems more suitable with respect
to applications.

2.2.1 Fractional integrals

In what follows [a,b] is a non empty interval of R. We start by defining the fractional
integral for L!-functions:

Definition 2.2 Let f € L'([a,b]). For every s € (0,1) we define the left-side and right-
side Riemann-Liouville fractional integrals by setting

I'(s —t

P B Lo ()
B irzas s [ oL

b
Ilf_(f):mngF(ls)/x (tf;))l it

Here I' stands for the classical Gamma function[1]. The properties of left-side and right-
side integrals are similar and we prove in the following the main results in the case of the
left-side integral I, (u). The fractional integration theory has been extensively studied in
[20]. Next proposition recall the main properties of the fractional integral (see Theorem
2.5 and 2.6 in [20]):

Proposition 2.1 For any s € (0,1), the followings hold
(i) the fractional integral is a continuous operator on the Lebesque spaces:

IS, - LP(a,b) = LP(a,b) p>1

(2.3)
I11a+ullLr(ap) < Cla, b, s)||ull 1p(ap) -
(ii) For every u € LP(a,b), with p > 1, we have
B 13—l oy = 0. (2.4)
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Next theorem concern the mapping properties of fractional integral on Lebesgue and
Hoélder spaces:

Proposition 2.2 For any s € (0,1), we get

(i) 15, is a continuous operator from LP(a,b) into L"(a,b) for every p € [1,1/s) and
r & [Lp/(1=sp));

(ii) For every p > 1/s the fractional integral I3, is a continuous operator from LP(a,b)
1
into C%* v (a,b);

(iii) For p = 1/s the fractional integral I, is a continuous operator from LP(a,b) into
L"(a,b) with r € [1,00);

(iv) the fractional integral IS, is a continuous operator from L (a,b) into C%*(a,b).

Here C%#(a, b) denotes the space of Holder (continuous) functions of order s. For the proofs
we refer to [20] ((7): proof of Theorem 3.5 p.66, (ii):Theorem 3.6 p.67, (iii): paragraph
3.3 p.91, (iv): Corollary 2 p.56). The previous proposition shows that the fractional
integration improves the function regularity.

Remark 2.1 (Fractional integral of BV-functions) We point out that to ensure the
Holder-regularity of the fractional integral we need to work with LP-functions with p > 1.
The case p = 1 is not covered from the previous proposition. However, the point (iii)
guarantees such a reqularity for bounded functions, which helps to study an important
subset of L'(a,b), namely BV ([a,b]) (see section /). Indeed, for dimension one, every
function of bounded variation is bounded, so that we get

I¥ (BV([a,b])) € C%%(a,b)  V¥s€(0,1). (2.5)

Next result states a stronger result for Holder continuous functions. For the proof we refer
to [20] again (Theorem 3.4 p.65, Lemma 13.2 p. 240, and Theorem 13.13 p. 238).

Theorem 2.1 Let s € (0,1) and o« > 0 be such that s + o < 1. Then the fractional
integral IS, is an isomorphism between C%*(a,b) and C%***(a,b). Moreover, for every
f €%t (a,b), there exists u € C®%(a,b) such that f = I:, (u) and

Cll fllcos+eapy < llullcosap) < DIl fllcos+a(ap) -

where C, D are two positive constants.

2.2.2 Fractional derivatives and representability

There are several different definitions of fractional derivatives. We recall next the definition
of Riemann-Liouville and Marchaud derivatives and refer to [20, 19] for a deeper analysis
of the fractional differentiation theory.

Definition 2.3 (Riemann-Liouville fractional derivative) Let u € L'(a,b) and n —
1 < s < n (n integer). The left Riemann-Liouville derivative of u at x € [a,b] is defined
by

I 1 dr T )
Ds — n—s — o 7dt 26
a+u(x> dxn a+ U(.T) F(n _ S) d.’ljn /a ($ _ t)s_n+1 ( )
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if the previous term exists. If such a derivative exists then, for s = 0, it coincides with the
function u at every point.
Similarly, we may define the right Riemann-Liouville derivative of u at x € [a,b] as

dn 1 dr v )
DS — s — I B —— 2.
p-ulw) dxn 0= u(@) I'(n—s)da” /w (t —x)s—ntl dt (27)

if the last term exists

Remark 2.2 We point out that Dj_ is the adjoint operator of D;, in the sense to be
precised by Theorem 5.7.

Example 2.1 (Power function) We consider the function u(zx) = ¥ (k > 0) on [0,1]
and a = 0. Then for every s € [n —1,n) and any x € (0,1) the fractional derivative at x
1s defined as

1 dn x
Dg =—— | tHa—t)"at
0+’LL(1U) F(n— S) d.’En/O (33‘ )

1 dr +k— /1 —s—1, k

— i n s 1— n—s d

I'(n — s) dz" [x 0 (1-v) v
B 1 I‘(k—i—l)I‘(n—s)ﬂ ks L(k+1) ks
T(n—s)T(k+14+n—s)dxn - T(k—s+1)
where we used the fact that

den’ T T(k—n+1)

If s is an positive integer number, then the fractional derivative coincides with the
classical one. Moreover, if k = 0 then the fractional derivative is null only if s € N (recall
that T'(1 —n) = c0). Remark also that

Dy,xF =0  Vs>0,k=1,..,1+]s]
where [s| denotes the integer part of the real number s.
Now we focus on the case p = 1.

Definition 2.4 (Representability) A function f € L'(a,b) is said to be represented by
a fractional integral if f € IS, (L'(a,b)) for some s € (0,1).

Theorem 2.1 in [20] yields the following important result:

Theorem 2.2 [L'-representability] Let f € L'(a,b). Then f € IS, (L'(a,b)) for some
€ (0,1) if and only if

II25f e Whl(a,b) and I'7°f(a) =0.
Moreover, there exists u € L'(a,b) such that f = I3 u, and it holds

u=D;, f. (2.8)



As an immediate consequence of Theorem 2.2, we have the following result:
Corollary 2.1 Assume s € (0,1);
Vu € L'(a,b)  Di IS u=u, (2.9)

and
Vu € IS (L' (a,b)) IS, Diu=u. (2.10)

In the previous corollary, (2.9) proves that fractional differentiation can be seen as the
inverse operator of the fractional integration.

The converse is not true in general: a counterexample is given by the power function
257k (k=1,...,1+[s]) whose s-fractional derivative is null (Example 2.1). This is similar
to the classical integration and differentiation theories where the integral of v’ differs from
u for a constant. However, according to (2.10), for every function that can be represented
as a fractional integral, the fractional integration acts as the reciprocal operator of the
fractional differentiation.

Using Theorem 2.2, it is easy to verify that the power function 27" is not represented
by a fractional integral. In fact I;;sms_k = I'(s — 1) so that it belongs to W1 (a,b) but
it does not verify I, *z°~*(0) = 0.

Next proposition follows from Theorems 2.1 and 2.2:

1

Proposition 2.3 Let a > 1 and u € C®%(a,b). Then D, u ezists for every s € [0,a)
and D3, u € CO“%(a,b).

Let us give a comment about the relationship between D;, and I;,. There are two
kind of results on the fractional integral that can be very useful to study the properties of
the fractional derivative :

e The first-one is a representability result (for instance Theorem 2.2) that gives condi-
tions for a function f to be represented as the fractional integral of an other function
u. This is quite important because it allows to easily prove that f admits a fractional
derivative with (2.8).

However, the representability of a function u (i.e., v = I§, ) is only a sufficient
condition to get the existence of the derivative. The power function and the Heav-
iside function give two examples of functions that are not representable and whose
fractional derivative exists (see previous discussion and Example 4.1).

e The second kind of result are embedding results, as (2.5), that give some informations
on the regularity of the fractional integral to get the Riemann-Liouville fractional
derivative existence.

2.2.3 Marchaud derivative and representability for p € (1,00)

The representability result given by Theorem 2.2 can be improved by characterizing the
set of the functions u € LP(a,b) (p > 1) represented by an other LP-function

u=1I;,(f) fe€LP(ab) s€(0,1).

In order to address this question we need to introduce a slightly different defini-
tion/notion of fractional derivative.



We remark that, for C!-functions and every s € (0, 1), the use of integration by parts
(and writing «/(t) = (u(t) — u(x))’)), gives

< B ’LL(:L') S v u(x) B U(t)
D‘H'u(x)_I‘(l—s)(w—a)s—'_r(l—s)/a ($_t)1+s

dt Ve (ab.  (211)

The Marchaud fractional derivative is defined as the right term of (2.11). To extend this
setting to non-smooth functions we need to define the integral by a limit, which leads to
the following definition:

Definition 2.5 (Marchaud fractional derivative) Let u € L'(a,b) and s € (0,1).
The left-side Marchaud derivative of u at x € (a,b] is defined by

D, u(x) = lim D3, _u(x)

e—0
with
DS, u(x) = u(z) + ° Ye()
ate I'l—s)(z—a)s T(1-s) °
and

r—¢ — ult .
- /a Wdt ifr>a+e,

Ye(w) = /xg u(z) (2.12)
o (7

Wdt ifa§$§a+€.

Note that the definition of 1. for a < x < a + ¢ is obtained by continuing the function
u by zero beyond the interval [a,b]. The passage to the limit depends on the functional
space we are working with. In our case we will consider LP-functions and the limit will be
defined in the sense of the LP-strong topology.

We remark that such a derivative is not defined at = a and that a necessary condition
for the derivative to exist is u(a) =0

The right-side derivative can be defined similarly by using the integral between = and b.
In the following we state the main results about Marchaud differentiation for the left-side
derivative, but we similar results can be obtained for the right-side one.

As expected,that, the Marchaud and Riemann-Liouville derivative coincide for every
s € (0,1), if u is a C'-function, and their expression is given by (2.11):

Vu e CY[a,b]) Dj u(x) =D, u(x) Ve (a,b];
Next results generalize Theorem 2.2 and Corollary 2.1 :

Theorem 2.3 Let s € (0,1) and p € (1,00). For any f € LP(a,b), we get f = I, (u)

with u € LP(a,b) if and only if the limit of the family {1:} as ¢ — 0, where 1. is defined

in (2.12) exists (for the LP norm topology).

Theorem 2.4 Let be f = I3, u where u € LP(a,b) with p > 1 and s € (0,1). Then
D, f=u.

Proofs can be found in [20] (Theorem 13.2 p. 229 and Theorem 13.1 p. 227, respectively.



Remark 2.3 (Marchaud vs Riemann-Liouville derivative) We point out that, for
every s € (0,1), we have

Vu e Ig—l—(Ll(aa b))a Vx € (a’ b} DZ—&-U(:L‘) = DZ+U(£E),
because of Theorems 2.2 and 2.4. With Theorem 2.1, this implies in particular that
Vu e C%%(a,b), Vz € (a,b] D; u(x) = D; u(x),

if s +a < 1. This is a useful result in order to study the fractional derivative because the
Marchaud derivative it is easier to handle.

3 Riemann-Liouville Fractional Sobolev space (p = 1)

In this section, we define the Sobolev spaces associated to the Riemann-Liouville fractional
derivative for p = 1. The case p = 1 is of particular interest since we aim to study the
relationship between these spaces and the spaces of functions of bounded variation.

A first possible definition could be given by the following set for s € (0, 1):

{ue LMa,b) | Dyyu e L a,b)}

which contains all the L'-functions such that the -Riemann-Liouville fractional derivative
or order s for a given s € (0,1) belongs to L.

Now, we noticed that if the Riemann-Liouville fractional derivative of u exists (for some
s), then I3, (u) is differentiable almost everywhere. However, we have no information on
the differential properties of the fractional integral. These differential properties are not
completely described by the pointwise derivative though it exists a.e. (it could be for
example a SBV-function). This shows that the previous definition is not suitable to
obtain a generalized integration by parts formula.

Therefore, to develop a satisfactory theory of fractional Sobolev spaces we use a more
suitable definition in the next section.

3.1 Riemann-Liouville Fractional Sobolev spaces

The Riemann-Liouville Fractional Sobolev spaces are defined as follows:
Definition 3.1 Let s € [0,1). We denote by

Wit oy = 1{u € L' (a,b) | L7u € W (a,b) }.
A similar space can be defined by using the right-side fractional integral.

Note that this definition does not mean that u is representable but its fractional integral
f= ;;Su is representable. We shall describe the representable functions of W}‘;i o Dext
(it is related to their trace).

We can make the connection with what would be the natural definition

Proposition 3.1 Let s € [0,1). Then

Wit oo C {u€ L'a,b) | Di ue L'(a,b) ).



Proof. Let be u € Wf%i o (C L'(a,b)). With deefinition 2.3 (with n = 1) we get
dI}*u

. In addition, Theorem 1 p. 235 in [12], yields that if 117 *(u) € W' (a,b)
its Frechet dgérivative exists a.e. and coincides with its weak derivative.

This means that if u € Wé’i7a+(a, b) then the fractional derivative D; u exists a.e. and
belongs to L'(a,b). O

S —
D; u=

Remark 3.1 If I;, (u) is differentiable at every point and its derivative is a L'-function,
then u € Wé’i7a+(a, b). This is due to the fact that if a function is differentiable at every
point and its derivative is L', then it belongs to W' (a,b).

In the sequel, when there is no ambiguity, we omit the index “RL,a+” in the notation.
Analogously to the usual theory we introduce the following space:

Definition 3.2 Let s € [0,1) and p € [1,00). We denote by
Wit (a,b) = {u € L'(a,b) | I)7"u € Wy, (a,b)}.
where W&’al(a, b) = {v e Whl(a,b) | v(a) = 0}.

Note that u € Wg’l(a, b) does not mean that u(a) = 0 (it may even not be defined).
The following result is a direct consequence of Theorem 2.2:

Theorem 3.1 Let s € [0,1). Then u € Wos’l(a, b) if and only if u is L'-representable.

Remark 3.2 Case s = 0. For every u € L*(a,b), if s = 1 then
I u(x) = / u(t)dt.

Then, as u € L'(a,b), we get I;;su S Wolv’;(a, b) and
D; u(x) = u(x).

This proves that
LY(a,b) = W*Y(a,b) = W' (a,b) if s=0.
Case s = 1. This case deserves more attention. Indeed, the integral operator is not
well defined for s =0 and I;;Su cannot be calculated explicitely if s = 1.
3.2 Main properties

Before performing comparisons between these fractional Sobolev spaces and the spaces of
bounded variation function spaces, we investigate their basic properties.

Theorem 3.2 For any s € (0,1), the Riemann-Liouville fractional Sobolev space W*!(a, b)
1s a Banach space endowed with the norm

Jullwsap) = lulliap) + e ullwrip-



Proof. It is easy to verify that || - [|yys,1(4,) is @ norm so that we have just to prove the
completeness. Let (uy)nen be a Cauchy sequence in W*(a, b) which implies that (u,)nen
and (12 *uy)nen are Cauchy sequences in L'(a,b) and W' (a, b), respectively. Then there
exists u € L(a,b) and v € Whi(a,b) such that

Ll _ Wl’l
Uy — U, I(L_sun v

Because of the definition we have I.;*(u,) € Wh'(a,b), and, because of (2.3), as
uy — u strongly in L', we have I;;S (up) — I;;S (u) strongly in L' as well. This proves
that 11, %(u) = v.

Now, we have to prove the (strong) L' convergence of the first distributional derivative
of (I7*(uy))" toward the derivative of I.*(u) that is : v/ = (Io;*(u))’, where v denotes
the weak derivative of v.

For every ¢ € C2°(a,b) we get

[ ety == [z

and, by taking the limit, we obtain

b b
/ ot = / oI5 ).
a a

This proves that [ ;_;S(U) is a Whl-function and its weak derivative is v/. This implies

1,1
that 1., *u, " I,7%u and this gives the result. O
An immediate consequence of this result is the following theorem

Theorem 3.3 W(f’l(a, b) equipped with the norm

[ellyer gy = lellrapy + 1 Pav el
1s @ Banach space.

Proof. The space W' (a,b) is complete with respect to the norm || - lws1(ap)- This
is done as in the previous proof since Wol’i(a, b) = {u € Whl(a,b) | u(a) = 0} is a Banach
space.

Moreover, with Poincaré’s inequality for spaces Woli (a,b), the norms || - [[yys.1(q,5) and

| - HWS’l(a,b) are equivalent. O

Theorem 3.4 Assume 0 < s < s’ < 1 and consider u € Ig;(Ll(a, b)). Then u €
Wg’l(a,b) and
lullwe oty < Cow lullyyers oy -

Proof. Let be u € Ig;(Ll(a, b)). Then u = Ig;f with f € L'(a,b). So with Theorem
2.5 p.46 in [20] we get u = Ig;_f = ]g+(];‘::8 ). Therefore u € IS, (L'(a,b)) for every
s € (0,5

As wu is represented by a fractional integral of a L'-function, then with Theorem 3.1,
u € Wg’l(a, b) for every s € (0,s']. As f € L'(a,b), Corollary 2.1 gives

/ / /
[1Darullpr = [|1DarIg flle = (1 fllze -
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Similarly, u is represented by g = I, C‘f;r_s f and

[Daruller = llgllr = [1a7" fller -
Moreover, with the continuity of the fractional integral operator we get
HIer_SfHLl < Cs,s/||f||L17
where Cj ¢ is a generic constant depending on s et s’. Finally
ID; g < Cow || Diyull -

This proves the result. O

Next theorem gives a relationship between Riemann-Liouville Sobolev spaces and Gagliardo
Sobolev spaces:

Theorem 3.5 Let be s,s' € (0,1) such that s’ > s. Then
‘1 1
We (a,b) N I3, (L (a,b)) € Wi . (a,b)
with continuous injection. More precisely,

Va € W @) NI (L 0 8) Ny gy < Cllullya oy

Proof. Let us choose s € (0,1) and s’ > s (in (0,1)). Let be u € I, (L'(a,b)). It is
represented by a fractional integral of a L'-function, so its Riemann-Liouville and Mar-
chaud derivative coincide. The norm of the fractional derivative can be evaluated by the
Marchaud derivative. Recall that if a <z < a + € we get

D cule) = i,

andifxr>a-+e

s B 1 u(x) s = u(x)
Dhct0) = Gy AT, G

L ) " Ju(x) — u(t)]
D3 < ds dt dx
IDascullzraten <pr—s) /m o TS /+/ rx—t\m

1 Ju(@)
—T'(1-ys) /a+5 (x —a)® ds +I‘(1—3)[u] W' (a,b)”

where the Gagliardo semi-norm [u] W () is given by (2.2). Moreover

s 1 a+te .
Dot cullL1(a,ate) < ST(1—s) /, lu()|ds;

finally

" lu(z)]

B 1 s a+e
HDa—i-,auHLl(a,b) < m </a+6 mds + € /a ’u(q})’ds + S[U]Wé‘l(a,b)> . (3.1)

11



Now, we know ([11] - section 6. for example) that
W (a,b) C LP(a,b)

1 /
with continuous injection and p € [1, ?s’) Asu e Wé’l(a, b), then u € LP(a,b) where
p can be chosen such as %_s <p< 1%5, since that s’ > s. Let us call p* the conjugate

exponent and apply Holder inequalities to relation 3.1. Note that p* satisfies 1 — sp* > 0.
We get

el o are,ty [(b —a)l 7 — sl‘sﬂ 1/p*

Do+ cull L ap) < I'(l-—s) 1 — sp*

lullzr@ate) a-spryspr
r'1-s)
S
+ m[u]wgl(a,b)

< HUHLP (b — a)lfsp* _ Elfsp* 1/p
) *

I'(l1-s
s

T Mt en

Passing to the limit as ¢ — 0 gives

o\ 1/P*
D lulle [ (b—a)P) s
< _— s .
IDesullzes < T(l1—s)\ 1-—sp A=) g an)

As |lullr < CHuHWg/’l(a,b) and

[U]Wg’l(mb) < [U]Wél’l(a,b) < Hu”Wél’l(a,b)

we finally get

DG ullp1ap) < Cfs, 8 a, b)HuHWCS;I’l(a,b) :

This ends the proof. O

Note that s = s’ is the critical case in the above theorem. We cannot handle this case
with the same arguments.

3.3 Integration by parts and relationship with W'!(a,b)
We have the following integration by parts formula ([6] Theorem 2).

1 1
Theorem 3.6 I[f0< —<s<1land0< - <s <1, then for every u € Wf%i ayl(a,b) and
p r ’

vE W}sz’i7b7(a, b) we get

b b
[ Drnoe) it = [(Dp )@u®de+ u)EH00) - (@0 @a) . (32)

12



Here
Wity = {ue L'a,b) | I1=5u € Wh(a,b) }.

This is a generalization of the following proposition proving that D, and Dj_ are adjoints

operators on the set of functions represented by fractional integral (see Corollary 2 p. 46
in [20])

Theorem 3.7 Letu € I3, (L*(a,b)) andv € I} (L%(a,b)) withp,q € [1,+oo], 1/p+1/q <
1+sandp,q#1if1/p+1/qg=1+s. Then

b b
| Do it = [ (Do)t de.

Example 3.1 (Smooth functions) Set [a,b] = [0,1]. For every u € C*°([0,1],R) and
for every s € [0,1) we get for any x # 0:

Dy u(z) = ml_s);fc /0 ") (@ — )t
(- 5)11“(1 —s) % [U(O)xl_s - /ox v(O - t)l_Sdt}
_ F(ll—s) [u(O)xS v /O ()@ — t)sdt}

1 U 1'78 1 u/ xlfs 1 * u// T — 1-—s
ra =0+ =g +r(2—s)/0 ()@ — )t

since I'(z +1) = 2I'(z) for every z > 0. Note that, in order to make such a derivative well
defined at x = 0, we have to suppose u(0) = 0.

As x + x5 belongs to L'(0,1) and u” is bounded and s € [0,1), we get that D§ u
belongs to L1(0,1). Moreover, we have

1 _ / 1— x M 1—
I s _ oy w0z W(0)x S_/ u'(t)(z —t)"
||U DOJruHLl([OJ],R) _/0 u (QZ‘) F(]_ — S) 1—\(2 — 5) 0 1—\(2 — 8) dt| dz
|u(0)] /1 oy w0 /”” u'(t)(z — )"
Asra—s ) @~ Ta—s ~ ), “Ta=s H%*
|u(0)] /1 oy w0z /”” u'(t)(z — )"
“te—s " L ["® Ty ") “Te-s H«
Since T'(1) = 1 by the Lebesque convergence theorem, we get
1 T
s s—1
o = Dl oy = )+ [ @) =0 = [ eyt de = fuco)).

Moreover, if u(0) =0
Va € [0, 1] lirr% Dy (u)(z) = ' (z),
s5—
and not only almost everywhere.

Now, we compare the usual Sobolev space W1(a,b) and the Riemann-Liouville frac-
tional Sobolev spaces.

13



Theorem 3.8 The space Whi(a,b) is continuously embedded in Wl‘;’i ot (a,b) for any
s€10,1) and
Diu — u'L' 4 u(a)d, as s—1,

weakly in M(a,b) (the space of Radon measures on (a,b)). Here o, is the Dirac measure
at a and L' denotes the 1D Lebesgue measure. Moreover, if u(a) = 0 we have

L' (ab
D; u i

Proof. According to Lemma 2.1 p. 32 in [20] and its corollary, every u € W' (a,b) admits
a fractional derivative for every s € (0,1). The fractional integral and derivatives are given
by

I} 5u(z) = b [u(a) (x —a)t =5 + /x o' (t)(z — t)l_sdt] (3.3)

I'2-s) a
and
Voelab) Diulz) — ml_s) [u(a) (@ —a) + / ()@ — t)_sdt} -
R

As s € (0,1) with (2.3) we get that the fractional derivative is defined at every point
of (a,b], belongs to L!(a,b), and

s ’u(a)’(b — a)l—s —5
D5 ulsiany < g — gy M0 s,

<C (lu(a)| + [lu'l| 1 (a, b)) -

As Whl(a,b) is continuously embedded in C([a,b])(see [2, 7]), we get |u(a)| < ||uloe <
CHUHW1,1 and

| Daullp(ap < Cllullyra

which proves the continuous embedding. (Here C is a generic constant that only depends
on a,b and s).
Now, if u(a) = 0, then

Vo € la,b] Di u(r)=I17%u(z). (3.5)

Then the strong convergence of the derivative follows from (2.4).
Otherwise, because of (2.4), I, *u’ weakly star converges to v’ in L'(a,b). Moreover, we

verify that
u(a) (x—a)™ «
TTu—s) u(a)dq

L'(a,b) which implies that DS, u weakly star converges to u’ +u(a)d, in M(a,b). Indeed,
for every ¢ € C!(a,b)

u(a) b i B u(a) . b iy o
F(l_s)/a(ﬂf—a) p(x)dr = T2—s [90(5)(6— a)' —/a(af —a)' 78 (2)dz | "= u(a)p(a).

We conclude with the density of the C! functions in the space of continuous functions. O
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Remark 3.3 We give an example of a smooth function u with u(a) # 0 and such that
the fractional derivative does not converge (as s — 1) to u' strongly in L.
It suffices to consider u(x) =1 on |a,b]. Then

/ = DS — (x - a’)is
u =0, aru(z) Ta—s)
and o )1
s —a) "% s
||Da+U”L1(a,b) = m 1 # Hu,HLl(a,b)'

4 Comparison with BV and SBV

Let us recall the definition and the main properties of the space of functions of bounded
variation (see [3, 5] for example), defined by

BV (a,b) = {ue LYQ) | TV (u) < +o0},

where Q is a bounded, open subset of R% and

TV (u) := sup {/Qu(x) div £(z)dz | € € CHQ), [|€]leo < 1}. (4.1)

The space BV (a,b), endowed with the norm ||ullgy (s = |lullzr + TV (u), is a Banach
space. The derivative in the sense of distributions of every u € BV (a,b) is a bounded
Radon measure, denoted Du, and TV (u) = [, |Du] is the total variation of u. We next
recall standard properties of functions of bounded variation in the case d = 1.

Proposition 4.1 Let (a,b) be an open subset of R.

1. For every uw € BV(a,b), the Radon measure Du can be decomposed into Du =
Vudx + D%u, where Vudx is the absolutely continuous part of Du with respect of
the Lebesque measure and D®u is the singular part.

2. The mapping u — TV (u) is lower semi-continuous from BV (a,b) to Rt for the
L'(a,b) topology.

3. BV (a,b) C L°(a,b) with continuous embedding, for o € [1,c0].
4. BV (a,b) C L?(a,b) with compact embedding, for o € [1,00) .

The singular part D®u of the derivative has a jump part and a Cantor component. The
SBV () space ( see [3] for example) is the space of functions in BV (€2) whose derivative
has no singular Cantor component. The functions of SBV (a,b) have two components:
one is regular and belongs to W1!(a,b) and the other one is a countable summation
of characteristic functions. More precisely, any increasing function in SBV (a,b) can be
written as -

u(z) = u(a) +/ o (t)dt + Z Pk X[ay,1)(T) x € [a,b]
a

T E€Jy

where J,, denotes the (at most countable) set of jump points of u and pr = u™ (zg) —u™ (zg)
denotes the positive jump of u at . This describes all the functions of SBV (a,b) since
any BV-function can be written as the difference of two increasing functions.
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Next example shows that there exists a SBV-function that belongs to WE; ot (a,b)
for any s € (0,1). This confirms the regularizing behavior of the fractional integral
operator and represents a preliminary result in order to prove the relationship between

S BV function and fractional Sobolev space.

Example 4.1 (Heaviside function) Let u : [0,1] = R (a = 0), u(z) = X[ 1)(7) with
a € (0,1). We consider s € [0,1). For every x € [a, 1] we get

0 if xe€[0,a)
I&;Su(a:) = (z—a)t™ (4.2)
— 1
T2— ) if €]
which proves that Ié;su € Wi([0,1]) so that u € WIS%’Ll70+([O, 1]).
The fractional derivative is given by
0 if z€l0,q]
Dy.ula) =3 (-a)* (43)
—_ 1
and, for every s € (0,1), we have that
/1 (x—a)™ [(z- ) 1 (- )
o« Tl—s) | I(2-s) ], T@2-s)
which implies that
s s—1
ID§ -l £ 0,17y == 1 = [Du| ([0, 1]) (4.4)

where |Du|([0,1]) denotes the total variation of uw on [0, 1].

Next result is useful to prove Theorem 4.1:

Lemma 4.1 Let {fi} C Whi(a,b) a sequence of non-negative functions with fi(a) = 0
and with non-negative derivative. We suppose also that

Y fer > freLl(ab). (4.5)
k k

Then ,
(Z fk(x)> =Y filx) a.e.x € lab]. (4.6)
k k

Proof. The result follows from the monotone convergence theorem and the hypothesis on
fx- In fact, for every x € [a, b] we get

S ae) =X [ nwd= [T3 i
k E 7@ ¢k

which proves that Y, fr € Wh1(a,b) and (4.6) follows. O
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Theorem 4.1 For every s € (0,1),it holds that SBV (a,b) C Wé’iaJr(a, b) and

b
D; u M@ et u(a™)d, + Z Prlz, as s— 1.

T EJy
Moreover, if u(a™) =0 then

[ Dayullzrapy = lullsBv@y as s—1,

where u(a™) denotes the right limit of u at zero and J, C (a,b) is the jump set of u.

Proof. With a simple change of variables, we can assume that [a,b] = [0,1]. This will
make the proof easier to read. Every BV-function can be written as the difference of
two increasing functions. Then, in the following we prove the result for a SBV-increasing
function. Every SBV-function v can be written as

u(r) = u(0) + /Ox o' (t)dt + Z Pk X[zp,1](T) x €10,1]

TEEJy

where u(0") denotes the right limit of u at zero, J,, denotes the (at most countable) set
of jump points of v and p, = ut(z1) — v~ (z1) denotes the positive jump of u at zx. In
particular

1
lullspv (o) = [u(0F)] +/0 W/ ()dt+ > pr.

TR E€Jy

In particular, v can be written as the sum of two functions

u(z) = f(z) +9(x),

f(z) =u(0™) +/Om o (t)dt,
9(2) = ) PrX(wey (@) -
€Sy

Now f belongs to Wh! and using Theorem 3.8, its fractional derivative is given by

_ u(0+)x_s 1—s,,/
o) = H ey + T ).
So we have fs € L'([0,1]) and
1
ifu(0t) =0 f; LoD as s — 1,

otherwise  f; MOY ety w(0T)dp as s—1.

Concerning g, by the monotone convergence theorem, we have

L9 =) I (kX)) ()

rEE€Jy

Now, because of (4.2) and (4.3), the previous series verify the hypothesis of Lemma 4.1.
Condition (4.5) can be verified by observing that

. Pk
L kX)) < D L@2-s)

TREJy TpEJy
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and Y D§,PkX[z,,1) is well defined for every = ¢ J,, and
TR EJy

/ > DipiXiopn @) dt = Y I Prxmn) (1) £ Y T2—-s) 2—3 '

T EJy T EJy T EJy

With the previous proposition, the fractional derivative of g is given by

—S

_ o r7l—s N/ __ (ZL‘ - l’k)
gs(z) = (Io+ g9) = Z mX[mk,l]-
TR E€Jy
Moreover, by applying the monotone convergence theorem, we get

19521 (a) = Zm/ (E ) Zp 1_%

TR EJy

—S

and, similarly to (4.4) and using the fact that the series in the right-side is normally
convergent, we have

1
lgsl Lt @py == D Pk (4.8)

TRE€Jy

The *-weak convergence of gs towards Y pgds, is obtained by the same arguments by
T E€Jy
writing every function test as the sum of its positive and negative part. Finally, as the

fractional derivative is a linear operator, we get

Di u(x) = fo(x) + gs(x) Vael0,1].

Then, D, u is defined at every point and belongs to L'(a,b), which implies that
u € WE’AOJF([O, 1]) for every s € (0,1). The result ensues from (4.7) and (4.8). O

The next two remarks point out that the fractional Sobolev spaces are larger than
SBV and give some relationship between BV and W1,

Remark 4.1 (Cantor function) The Cantor function is an example of increasing con-
tinuous function on [0,1] whose standard derivative is defined and null at a.e. point. It
is well known that such a function is of bounded variation but is not a SBV -function.
More precisely such a function is Hélder-continuous with exponent o = In2/1n3 (i.e.,
the Hausdorff dimension of the Cantor set). Then, with Proposition 2.5 the Riemann-
Liouwille derivative is well defined at every point for every s € (0,a). Moreover the
Riemann-Liouville derivative of order s belongs to C>*~%([0,1]), and we get that the Can-
tor function belongs to W]‘;’i70+([0, 1]) for every s € (0,«). This proves in particular that
in general
(BV\SBV)N W}, #0.

Remark 4.2 (Fractional vs a.e. differentiation ) In [19] the authors investigate the
relationship between usual a.e. differentiation and the fractional Riemann-Liouville deriva-
tive definition. Several interesting examples are given. One of them is given by the Weier-
strass function defined as

= Z g (e — el z € [a,b]
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where ¢ > 1. It is proved that W has continuous and bounded fractional Riemann-Liouville
derivatives of all orders s < 1. However, since W is nowhere differentiable it cannot be of
bounded variation.

This implies that Riemann-Liouville fractional Sobolev spaces are larger than BV ([a, b]).
Then we can state

SBV. c () W', (] W'\ BV #0.

5€(0,1) 5€(0,1)

5 Conclusion

In this paper we try to make connections between the two main definitions of fractional
derivatives : the local (pointwise) one whose typical representation is the RL derivative and
the global one which is typically the Gagliardo one. In view of a more precise description
of the derivative of order s € (0,1) with respect to BV functions we have also proved
preliminary results to compare SBV (a, b) and W*!(a,b). Open problems are numerous. In
particular, it remains to strongly connect the Riemann-Liouville theory with the Gagliardo
one. This would allow to perform comparison between W*!(a,b) and Besov-spaces for
example. In addition, we have to understand precisely how W*!(a, b) behaves with respect
to BV (a,b) to get some information about the BV\W?! functions. In particular, we
proved that SBV (a,b) C W*!(a,b) and exhibit a function in W*!(a,b), that does not
belong to BV (a,b); however we still don’t know if BV (a,b) C W*!(a,b) (can we find a
function in BV (a,b)\W#*(a,b) ?) In addition, it remains to prove density results and
continuity /compactness results in view of variational models involving the RL derivative.
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