Gibbs/Metropolis algorithms on a convex polytope - Archive ouverte HAL
Article Dans Une Revue Mathematische Zeitschrift Année : 2012

Gibbs/Metropolis algorithms on a convex polytope

Résumé

This paper gives sharp rates of convergence for natural versions of the Metropolis algorithm for sampling from the uniform distribution on a convex polytope. The singular proposal distribution , based on a walk moving locally in one of a fixed, finite set of directions, needs some new tools. We get useful bounds on the spectrum and eigenfunctions using Nash and Weyl-type inequalities. The top eigenvalues of the Markov chain are closely related to the Neuman eigenvalues of the polytope for a novel Laplacian.
Fichier principal
Vignette du fichier
gibbsmetro_01Apr2011.pdf (321.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01284522 , version 1 (07-03-2016)

Identifiants

Citer

Persi Diaconis, Gilles Lebeau, Laurent Michel. Gibbs/Metropolis algorithms on a convex polytope. Mathematische Zeitschrift, 2012, 272 (1), pp.109-129. ⟨10.1007/s00209-011-0924-5⟩. ⟨hal-01284522⟩
121 Consultations
199 Téléchargements

Altmetric

Partager

More