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Abstract

This paper gives sharp rates of convergence for natural versions of the Metropolis algorithm
for sampling from the uniform distribution on a convex polytope. The singular proposal dis-
tribution, based on a walk moving locally in one of a fixed, finite set of directions, needs some
new tools. We get useful bounds on the spectrum and eigenfunctions using Nash and Weyl-
type inequalities. The top eigenvalues of the Markov chain are closely related to the Neuman
eigenvalues of the polytope for a novel Laplacian.

1 Introduction

1.1 Overview

The Metropolis algorithm and the Gibbs sampler (also known as Glauber dynamics) are often used
together as one of the basic tools of scientific computation. We treat the following example: let Ω
be a polyhedral convex set in d dimensions. To sample from the uniform distribution on Ω, from
a point x in Ω, pick a direction e from a fixed finite collection. Set y = x + ue where u is chosen
uniformly in [−h, h]. If y ∈ Ω, move to y. Else, stay at x. Under a mild generality condition
on the set of directions in relation to Ω, this Markov chain converges to the uniform distribution
on Ω. Our main result gives a sharp determination of the exponential rate of convergence of this
algorithm. It is ce−ng(h) with g(h) asymptotic to h2ν for ν the first non zero eigenvalue of a novel
Laplacian defined on Ω with Neumann condition on the boundary.

Sampling from a convex set is a practical problem. For example, choosing a uniformly dis-
tributed 100 × 100 doubly stochastic matrix [1] or a uniformly distributed 100 × 100 tri-diagonal
doubly stochastic matrix [5]. It is also a basic problem of study in theoretical computer science
[9, 10]. Many algorithms have been proposed and studied. A readable textbook description of the
Gibbs sampler is in Liu [8]. See [6] for a review of rigorous results for the Metropolis algorithm
in finite spaces. The popular hit and run algorithm [2, 11, 15] was introduced for this purpose.
∗Supported in part by NSF grant 0804324
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‡Corresponding author: Parc Valrose 06108 Nice Cedex 02, France; lebeau@unice.fr
§Supported in part by ANR-06-BLAN-0250-03 and ANR-09-JCJC-0099-01

1



Hit and run makes long moves and will probably be preferred in practice to the local algorithms
studied here.

Spectral techniques for analysis of the Metropolis algorithm on continuous spaces are developed
in [3, 4, 7]. The proposal distributions there are “ball walks” choosing from the uniform distribution
on the interior of a ball. The discrete set of directions studied here is widely used in practice and
necessitates new ideas. Present problems can also be studied by Harris recurrence techniques
[12, 14] and by the path techniques of Yuen [16]. These give useful results but do not get the sharp
rates on the exponents derived here.

The remainder of this section gives a careful description of the Markov chain and the geometric
connection between the underlying directions and the convex set Ω required for ergodicity. Section 2
gives bounds on the spectrum and eigenvectors using Nash inequalities and Weyl-type inequalities.
Section 3 uses this spectral information to get rates of convergence. Section 4 proves that our
operator (suitably rescaled) converges, in the strong resolvent sense, to a novel Laplace operator on
Ω with Neumann boundary conditions. A similar convergence of the ball walk Metropolis operator
to the usual Neumann Laplacian is a key ingredient of [4, 7]. The final section shows how to modify
the argument to handle a continuous choice of direction.

1.2 Basic definitions

Let Ω be an open convex polytope in Rd, d ≥ 2. Thus there exists linear forms `j : Rd → R, j =
1, . . . ,m and real numbers bj such that

Ω =
{
x ∈ Rd, ∀j = 1, . . . ,m, `j(x) > bj

}
(1.1)

Assume also that Ω is bounded and non empty.
Consider E = {e1, . . . , ep} a family of vectors in Rd. For any j ∈ {1, . . . , p} we introduce the

operator acting on continuous functions Mj,hf(x) = mj,h(x)f(x) +Kj,hf(x), where

Kj,h(f)(x) =
1
2

∫
t∈[−1,1]

1Ω(x+ htej)f(x+ htej) dt (1.2)

and mj,h(x) = 1−Kj,h(1)(x).
The local Metropolis operator associated to the family E is

Mh(f)(x) =
1
p

p∑
j=1

(Kj,hf(x) +mj,h(x)f(x)) . (1.3)

In the sequel, denote mh = 1
p

∑p
j=1mj,h and Kh = 1

p

∑p
j=1Kj,h. Let Mh(x, dy) be the Markov

kernel associated to this operator. This defines a bounded self-adjoint operator on L2(Ω). Moreover,
since Mh(1) = 1, ‖ Mh ‖L2→L2= 1. Thus the probability measure dx

vol(Ω) on Ω is stationary. For
n ≥ 1, denote by Mn

h (x, dy) the kernel of the iterated operator (Mh)n. For any x ∈ Ω, Mn
h (x, dy) is

a probability measure on Ω, and our main goal is to get some estimates on the rate of convergence,
when n→ +∞, of the probability Mn

h (x, dy) toward the stationary probability dy
vol(Ω) .

A good example to keep in mind is the case where Ω = AN is the set of N×N doubly stochastic
matrices. In other words,

AN =

{
(ai,j)1≤i,j≤N , ∀i, j, ai,j > 0,

∑
k

aik =
∑
k

akj = 1

}
. (1.4)
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The set AN can be viewed as convex open polytope in A0
N = {(ai,j)1≤i,j≤N ,

∑
k aik =

∑
k akj = 1}.

A good way to sample from AN is to use the Metropolis strategy in the following manner. Starting
from a matrix A ∈ AN choose two distinct rows Ri1 , Ri2 and two distinct columns Cj1 , Cj2 at
random. Denote~i = (i1, i2, j1, j2) and F = F (~i) the matrix such that Fi,j = δi1j1−δi1,j2−δi2j1+δi2j2 .
For h > 0 given, build the family of matrices (Ã(t) = A+ tF (~i))t∈[−h,h]. For any t ∈ R the matrix
Ã(t) belongs to the set A0

N . Taking t ∈ [−h, h] at random and keeping the move A → Ã(t) only
if it results in an element of AN , we are exactly in the above situation with E = {F (~i)}. This
algorithm is used in [1] to study things like the distribution of typical entries or the eigenvalues of
random doubly stochastic matrices.

Let us go back to the general problem. From the definition of Ω, a point x ∈ Rd belongs to ∂Ω
iff there exists a partition I ∪ J = {1, . . . ,m} such that I 6= ∅ and

∀i ∈ I, `i(x) = bi and ∀j ∈ J, `j(x) > bj . (1.5)

Define the following function c : Rd → N ∪ {+∞} by

c(x) = 0 if x ∈ Ω

= +∞ if x ∈ Rd \ Ω (1.6)
= card(I) if x ∈ ∂Ω.

To proceed, the following geometric condition is needed; it shows how the generating set E must
be related to the convex set Ω. Proposition 1.5 shows the condition is equivalent to Mh having a
spectral gap.

Definition 1.1. The family E is weakly incoming to the set Ω if for any point x0 ∈ ∂Ω there exists
ε > 0, θ ∈ {±1} and e ∈ E such that, for c defined in (1.6),

c(x0 + θte) < c(x0) ∀t ∈]0; ε]. (1.7)

The following observation is simple and fundamental. Suppose that E is weakly incoming, then
span(E) = Rd. Indeed, otherwise there is a hyperplane H = (Rν)⊥ of Rd such that span(E) ⊂ H.
Since Ω is compact, the function x ∈ Ω 7→ 〈x, ν〉 would have a global minimum in some x0 ∈ ∂Ω.
Since Ω is open, Ω ⊂ x0 + H+, where H+ = {y ∈ Rd, 〈y, ν〉 > 0}. As E is weakly incoming, there
is u ∈ span(E) such that c(x0 + u) = 0. In other words, x0 + u ∈ Ω ∩ (x0 + H). This contradicts
Ω ⊂ x0 +H+.

Example 1.1. Consider Ω the convex hull of on equilateral triangle (ABC) in R2 and E = {e1, e2}
like on Figure 1. For α ∈]0, π/3], E is weakly incoming to Ω whereas for α ∈]π/3, π[, condition
(1.7) is satisfied in every point x0 of the boundary excepted in point A.

Remark 1.2. In the above case of doubly stochastic matrices, the set E = {F (~i)} is weakly incom-
ing. Indeed, if A is in the boundary of AN , there exists i1 and j1 such that Ai1j1 = 0. Since A is
doubly stochastic, there exists i2, j2 such that Ai1j2 > 0 and Ai2j1 > 0. Let ε = min(Ai1j2 , Ai2j1)/2,
then for all t ∈]0, ε], c(A+ tF (i1, i2, j1, j2)) < c(A).

Denote Hk = ker(`k) and let νk be the unit vector such that `k(νk) > 0 and H+
k = {y ∈

Rd, `k(y) > bk}.
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Figure 1: Weakly incoming condition in the case of an equilateral triangle.

Definition 1.2. Let u ∈ Rd \ {0}. The vector u is incoming to Hk if 〈u, νk〉 ≥ 0. Further, u is
strictly incoming to Hk if 〈u, νk〉 > 0; u is strictly outgoing to Hk if 〈u, νk〉 < 0; u is parallel to Hk

if u ∈ Hk.

Lemma 1.3. Suppose that E is weakly incoming to Ω and let x0 ∈ Ω and k = c(x0). There exists
r > 0 and I ⊂ {1, . . . ,m} such that ]I = k and for B(x0, r) the open ball of radius r about x0,

Ω ∩B(x0, r) = B(x0, r) ∩
(
∩i∈IH+

i

)
. (1.8)

Further, there exists β1, . . . , βk,∈ {1, . . . , p}, a family (θn)n=1,...,k of numbers in {±1} and a bijec-
tion {1, . . . , k} 3 n 7→ in ∈ I such that for all n ∈ {1, . . . , k},

θneβn is strictly incoming to Hin ;
θneβn is incoming to Him , ∀m > n.

(1.9)

Proof. Proceed by induction on k = c(x0). When k = 0, there is nothing to prove.
Suppose that the property holds true at rank k′ ≤ k−1 and let x0 ∈ ∂Ω be such that c(x0) = k.

By definition of Ω, there exists r > 0 and I ⊂ {1, . . . ,m} with ]I = k such that

Ω ∩B(x0, r) = B(x0, r) ∩ (∩i∈IH+
i ) (1.10)

Since E is weakly incoming to Ω, there exists q ∈ {1, . . . , k}, θ1 = ±1, β1 ∈ {1, . . . , p} and
i1, . . . , iq ∈ I such that θ1eβ1 is strictly incoming to Hin for n = 1, . . . , q and θ1eβ1 is parallel
to Hi for i ∈ I ′ := I \ {i1, . . . , iq}. By definition of Ω there exists x′0 close to x0 and r′ > 0
such that B(x′0, r

′) ∩ Ω = B(x′0, r
′) ∩ (∩i∈I′H+

i ). From the induction hypothesis, there exists
βq+1, . . . , βk ∈ {1, . . . , p}, θq+1, . . . , θk = ±1 and a bijection {q + 1, . . . , k} 3 n 7→ in ∈ I ′ such that
for all n ≥ q + 1,

θneβn is strictly incoming to Hin ;
θneβn is incoming to Him ∀m > n.

(1.11)

and the proof is complete.

Corollary 1.4. Suppose that E is weakly incoming to Ω. There exist r > 0 and ε ∈]0, 1], such that
for all x0 ∈ Ω, there exists q ∈ {1, . . . , p} and θq = ±1 such that

x+ tθqeq ∈ Ω ∀x ∈ B(x0, r) ∩ Ω, ∀t ∈ [0, ε]. (1.12)
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Proof. The fact that r, ε > 0 can be chosen uniformly with respect to x0 follows easily from
compactness of Ω. The statement is trivial when x0 ∈ Ω. Suppose that x0 ∈ ∂Ω. From Lemma
1.3, there exists r > 0 and I = {i1, . . . , ik} ⊂ {1, . . . , p} such that

Ω ∩B(x0, 2r) = B(x0, 2r) ∩
(
∩i∈IH+

i

)
(1.13)

and θ1 = ±1, β1 ∈ {1, . . . , p} such that

θ1eβ1 is strictly incoming to Hi1 ;
θ1eβ1 is incoming to Hiq , ∀q > 1.

(1.14)

Let x ∈ B(x0, r) ∩ Ω and ε ∈]0, r[. Then

〈νi, θ1β1〉 ≥ 0, ∀i ∈ I =⇒ x+ tθ1eβ1 ∈ Ω. (1.15)

Thanks to (1.14), the left hand side of the above property is satisfied and the proof is complete.

Proposition 1.5. The family E is weakly incoming to Ω iff 1 is not in the essential spectrum of
Mh.

Proof. If E is weakly incoming to Ω, 1 is not in the essential spectrum of Mh thanks to Proposition
2.2 of this paper and Theorem 1.1 in [4].

Suppose now that E is not weakly incoming to Ω. This means that there exists x0 ∈ ∂Ω such
that (1.7) does not hold. Let k = c(x0). There exists a neighborhood V of x0 and I ⊂ {1, . . . ,m}
with ]I = k such that V ∩ Ω = V ∩ (∩i∈IHi). Then, for any θ = ±1 and any j ∈ {1, . . . , p}, the
following holds true:

If θej is strictly incoming to one of the (Hi)i∈I ,
then θej is strictly outgoing to one of the (Hi)i∈I .

Otherwise, there is j ∈ {1, . . . , p} and θ = ±1 such that θej is strictly incoming to one of the
(Hi)i∈I and incoming to the other. Then for t > 0 small enough, c(x0 + θtej) < c(x0).

Hence, assume that there exists r ≥ 1 such that

• for any j ∈ {1, . . . , r}, ej and −ej are strictly outgoing to some of the (Hi)i∈I ;

• for any j ∈ {r + 1, . . . , p}, ej is parallel to the (Hi)i∈I .

Recall that νi denotes the unit incoming orthogonal vector to Hi. Let W = span(νi, i ∈ I) and
near x0 use the variable x = x0 + (x′, x′′) with x′ ∈W and x′′ ∈W⊥. Let χ(x′) = 1l1

2<|x
′|<1

and for

λ, h > 0 denote fλh(x) = (λh)−dim(W )/2χ( x
′

λh). Since any v ∈ W⊥ is parallel to the (Hi)i∈I , there
exists λ0, c0 > 0 such that for all h ∈]0, 1] and λ ∈]0, λ0], ‖fλh‖L2(Ω) ≥ c0.

For any j ∈ {r + 1, . . . , p}, ej is parallel to the (Hi)i∈I . Hence, the function t 7→ fλh(x+ htej)
is constant and (Mj,h − 1)fλh(x) = 0.

On the other hand, for any j ∈ {1, . . . , r} there exists ij , i′j ∈ I such that ej is strictly outgoing
to Hij and −ej is strictly outgoing to Hi′j

. Consequently, there exists γj , δj > 0 such that for t > 0,

x ∈ Ω and x− tej ∈ Ω =⇒ dist(x− tej , Hi′j
) ≤ dist(x,Hi′j

)− γjt

x ∈ Ω and x+ tej ∈ Ω =⇒ dist(x+ tej , Hij ) ≤ dist(x,Hij )− δjt.
(1.16)
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Let us compute the potential mj,h on the support of fλh. For x ∈ supp(fλh), |xj | ≤ λh for all
j = 1, . . . , r. In particular dist(x,Hij ) ≤ λh and dist(x,Hi′j

) ≤ λh and thanks to (1.16),

1−mj,h(x) =
∫ 1

0
1Ω(x+ htej) + 1Ω(x− htej) dt

≤
∫

0≤t≤dist(x,Hij )/(δjh)
dt+

∫
0≤t≤dist(x,Hi′

j
)/(γjh)

dt ≤ λ
(

1
γj

+
1
δj

)
.

(1.17)

Finally,

〈(1−Mh)fλh, fλh〉L2(Ω) =
1
p

r∑
j=1

〈(1−Mj,h)fλh, fλh〉L2(Ω)

≤ 1
p

r∑
j=1

∫
Ω

(1−mj,h(x)) |fλh(x)|2 dx ≤ Cλ‖fλh‖2L2(Ω).

(1.18)

Here we used the fact that for any non-negative fonction f , one has 〈Kj,hf, f〉 ≥ 0. Finally, we
conclude by taking λ = 2−n → 0 as n→∞. Indeed, the functions f2−nh are mutually orthogonal.
Their norm is bounded uniformly from below and they satisfy 0 ≤ 〈(1 − Mh)f2−nh, f2−nh〉 ≤
C2−n.

2 Spectral Analysis of the Metropolis Operator

This section is devoted to the analysis of the spectral theory of the Metropolis operator. For this
purpose, we introduce a Laplace operator associated to the family E to be used as a model. For
any e ∈ Rd \ {0} and any smooth function u, define ∂eu(x) = d

dt(u(x+ te))|t=0. Then, consider the
operator ∆E, defined by

∆Eu =
1
6p

p∑
j=1

∂2
eju

D(∆E) =
{
u ∈ H1(Ω), ∆Eu ∈ L2, ∂n,Eu|∂Ω = 0

} (2.1)

with ∂n,Eu(x) = 1
p

∑p
j=1〈n(x), ej〉∂eju(x), n(x) denoting the outgoing normal vector to the bound-

ary at point x. If the domain Ω has smooth boundary, the normal derivative is well defined. In the
case where it is Lipschitz, it can be defined by duality in the following way.

Define first the gradient and divergence associated to the family E, by divEu = 1
p

∑p
j=1 ∂ejuj

for any u = (u1, . . . , up) and ∇Eu = (∂e1u, . . . , ∂epu). Then, define a trace operator γE by

γE :
{
u ∈

(
L2(Ω)

)p
,divE(u) ∈ L2(Ω)

}
→ H−1/2(∂Ω) (2.2)

and and for v ∈ H1(Ω),∫
Ω

divE(u)(x)v(x) dx = −1
p

∫
Ω
〈u(x),∇Ev(x)〉Cp dx+

∫
∂Ω
γE(u)v|∂Ω dσ(x). (2.3)

In particular, for u ∈ H1(Ω) satisfying ∆Eu = 1
6divE∇Eu ∈ L2(Ω) define ∂n,Eu|∂Ω = γE(∇Eu) ∈

H−1/2(∂Ω) and the set D(−∆E) is well defined. The Dirichlet form associated with −∆E is

EE(u) =
1
6p

p∑
j=1

∫
Ω
|∂eju(x)|2 dx. (2.4)
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Let E0 be the canonical basis in Rd. Then, ∆E0 = 1
6d∆ where ∆ is the usual Laplace operator

and EE0(f) = 1
6d

∫
Ω |∇f |

2dx is the usual Dirichlet form. Since E = {e1, . . . , ep} spans Rd, a simple
calculation shows that there exists a constants C > 0 such that

C−1EE0(f) ≤ EE(f) ≤ CEE0(f). (2.5)

Then, it is standard to show that −∆E is the self-adjoint realization of the Dirichlet form EE.
A standard argument using Sobolev embedding shows that −∆E has compact resolvant. Denote
its spectrum by ν0 = 0 < ν1 < ν2 < . . . and by mj the associated multiplicities. Observe that
m0 = 1. Section 4 shows that h−2(1−Mh) converges to −∆E in the strong resolvent sense so that
eigenvalues and eigenvectors converge; see [13].

The main theorem of this section follows.

Theorem 2.1. Suppose that E is weakly incoming to Ω, then the following hold true.

i) There exists h0 > 0, δ0 ∈]0, 1
2 [ and a positive constant C such that for any h ∈]0, h0], the

spectrum of Mh is a subset of [−1 + δ0, 1], 1 is a simple eigenvalue and Spec(Mh)∩ [1− δ0, 1]
is discrete.

ii) For any h ∈]0, h0] and 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Mh in [1− h2λ, 1] (with

multiplicity) is bounded by C(1 + λ)d/2.

iii) For any R > 0 and ε > 0 such that νj+1− νj > 2ε for νj+2 < R, there exists h1 > 0 such that
one has for all h ∈]0, h1],

Spec
(

1−Mh

h2

)
∩]0, R] ⊂ ∪j≥1[νj − ε, νj + ε], (2.6)

and the number of eigenvalues of 1−Mh
h2 in the interval [νj − ε, νj + ε] is equal to mj.

A consequence of this theorem is that Mh has a spectral gap g(h) = 1−sup(Spec(Mh)\{1}) > 0
and that limh→0+ h−2g(h) = ν1. This will be used in the proof of total variation estimates.

The strategy used to prove the first part of Theorem 2.1 is very close to the one given in [4].
First, show that some iterate of the Markov kernel “controls” the random walk on a ball. Next,
this ball walk on the polytope is compared to the same walk on a large torus containing Ω. Finally
the information on the torus is transferred back to the original problem.

The proof of the last part of Theorem 2.1 is slightly different from the proof in [4]. Indeed, the
starting point of the analysis in [4] is that for regular function ϕ with normal derivatives vanishing
on the boundary, h−2(1 − Th)ϕ is close to −∆ϕ up to the boundary, where Th is the Metropolis
operator associated to the kernel vol(B(0, 1))−1h−d1|x−y|<h. Here, this property fails to be true.
Suppose for instance that Ω ⊂ R2 and that its boundary is given near (0, 0) by x1 ≥ 0. Suppose
that e1 = (a, b) and e2 = (b,−a) for some a, b > 0. Then

h−2(1−M1,h)f(x) =
1

2h3

∫
|t|<h,x+te1∈Ω

(f(x)− f(x+ te1)) dt

= − 1
2h3

∂e1f(x)
∫
|t|<h,x+te1∈Ω

t dt+O(1)

=
1

4h3
∂e1f(x)1]0,ah](x1)

(
h2 − x2

1

a2

)
+O(1).

(2.7)
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A similar expression holds for M2,h and summing these equalities gives

h−2(1−Mh)f(x) =
1

4h3

(
∂e1f(0, x2)1]0,ah](x1)

(
h2 − x2

1

a2

)
+ ∂e2f(0, x2)1]0,bh](x1)

(
h2 − x2

1

b2

))
+O(1) (2.8)

If a = b, ∂e1f + ∂e2f is proportional to the normal derivative of f and hence, the above quantity
is bounded.

Suppose now that a < b. Then the above quantity is bounded on x1 ∈ [ah, bh] provided
∂e2f(0, x2) = 0. Then the same argument on [0, ah] shows that ∂e1f(0, x2) = 0 also.

In order to avoid these difficulties, we work directly on the quadratic form and show that the
Dirichlet form associated to the Metropolis operator converges to the Dirichlet form of the Laplace
operator with Neuman boundary conditions. The end of this section is devoted to the proof of
Theorem 2.1.

Proposition 2.2. There exists N ∈ N and constants c1, c2 > 0 such that for all h ∈]0, 1]

MN
h (x, dy) = µh(x, dy) + c1h

−d1|x−y|<c2h dy (2.9)

where for all x ∈ Ω, µh(x, dy) is a positive Borel measure.

Proof. The proof follows the lines of [4]. Denote Kh = 1
p

∑p
j=1Kj,h. Since for any h2 > h1 > 0 and

any non-negative function f , h2Kh2f ≥ h1Kh1f , it is sufficient to prove the following: there exists
h0 > 0, c1, c2 > 0 and N ∈ N∗ such that for all h ∈]0, h0], one has, for all non-negative continuous
functions f ,

KN
h (f)(x) ≥ c1h

−d
∫
y∈Ω,|x−y|≤c2h

f(y) dy. (2.10)

First note that it is sufficient to prove the weaker version: for all x0 ∈ Ω, there exist N(x0), α =
α(x0) > 0, c1 = c1(x0) > 0, c2 = c2(x0) > 0, h0 = h0(x0) > 0 such that for all h ∈]0, h0], all x ∈ Ω
and all non-negative functions f

|x− x0| ≤ 2α =⇒ K
N(x0)
h (f)(x) ≥ c1h

−d
∫
y∈Ω,|x−y|≤c2h

f(y) dy. (2.11)

Let us verify that (2.11) implies (2.10). Decreasing α(x0) if necessary, it may be assumed that
2α(x0) < r(x0), where r(x0) is given by Lemma 1.3. Since Ω is compact, there exists a finite set
F such that Ω ⊂ ∪x0∈F {|x − x0| < α(x0)}. Let N = sup{N(x0), x0 ∈ F}, c′i = minx0∈F ci(x0)
and h′0 = minx0∈F h0(x0). One has to check that for any x0 ∈ F and any x with |x− x0| ≤ α(x0),
the right inequality in (2.11) holds true with N = N(x0) + n in place of N(x0) for some constants
c1, c2, h0. Moreover, one may assume that h0 max |ej | ≤ minx0∈F α(x0)/N .

Let ε > 0, q ∈ {1, . . . , p} and θq = ±1 be given by Corollary 1.4. Then for |x−x0| < (2− 1
N )α(x0),

one has

K
N(x0)+1
h f(x) ≥ 1

p
Kh,βqK

N(x0)
h f(x) ≥ 1

p

∫ 1

0
K
N(x0)
h f(x+ htθqeβq) dt

≥ c′1
h−d

p

∫ min(ε,
c2

2 maxj |ej | )

0

∫
y∈Ω, |y−x−htθqeβq |<c2h

f(y) dydt

≥ c′0h−d
∫
y∈Ω, |y−x|<c2h/2

f(y) dy

(2.12)
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since for any t ∈ [0,min(ε, c2
2 maxj |ej |)], {|y− x| < c2h/2} ⊂ {|y− x− htθqeβq | < c2h}. Iterating this

computation n ≤ N times gives (2.10).
It remains to prove (2.11). If x0 ∈ Ω, the proof is obvious. Indeed, since E spans Rd, it is easy

to see that for any δ > 0, there exists c3, c4 > 0 such that for any non-negative function f ,

dist(y, ∂Ω) ≥ δh =⇒ Kd
h(f)(y) ≥ c3h

−d
∫
z∈Ω, |y−z|<c4h

f(z) dz ∀y ∈ Ω. (2.13)

Suppose that x0 ∈ ∂Ω and denote k = c(x0). Let (ij)1≤j≤k, (βj)1≤j≤k, (θj)1≤j≤k be as in Lemma
1.3. Let 1 = γ1 > γ2 > · · · > γk > 0 and δ1, . . . , δk > 0 be such that for all j, γj − δj > γj+1. Let
Gj = [γj − δj , γj ] and G = Πk

j=1Gj . In the following computation, c denotes a positive constant
independant of f and h that may change from line to line. Since f is non-negative,

Kk
h(f)(x) ≥ p−kKβ1,h . . .Kβk,hf(x) ≥ c

∫
t∈Ah(x)

f(x+ h

k∑
j=1

θjtjeβj ) dt (2.14)

where Ah(x) = {t = (t1, . . . , tk) ∈ G, ∀l = 1, . . . , k, x+ h
∑l

j=1 θjtjeβj ∈ Ω}.
Since θ1eβ1 is strictly incoming to Hi1 , there exists some constant c5, c6 > 0 such that for any

t ∈ I,

dist

x+ h
k∑
j=1

θjtjeβj , Hi1

 ≥ c5ht1 − c6h(t2 + · · ·+ tk)

≥ c5h(γ1 − δ1)− c6h(γ2 + · · ·+ γk)
≥ c5h(γ1 − δ1)/2

(2.15)

by taking γ2, . . . , γk small with respect to γ1. Similarly, by taking γj very small with respect to
γj+1 for j = 2, . . . , k, there is c7 > 0 such that for any j = 1, . . . , k,

∀(t1, . . . , tj) ∈ G1 × · · · ×Gj , dist

(
x+ h

j∑
i=1

θitieβi ,R
d \ Ω

)
≥ c7h. (2.16)

Hence,

Kk
hf(x) ≥ c

∫
t∈G

f

x+ h
k∑
j=1

θjtjeβj

 dt (2.17)

and for any N ≥ 0

Kk+N
h f(x) ≥ c

∫
t∈G

KN
h (f)

x+ h
k∑
j=1

θjtjeβj

 dt. (2.18)

Combining (2.13), (2.16) and (2.18), there is c8 > 0 small enough such that any y ∈ Rd such that
|x+ h

∑k
j=1 tjeβj − y| < c8h belongs to Ω and hence

Kd+k
h f(x) ≥ ch−d

∫
t∈G

∫
|x+h

Pk
j=1 tjeβj−y|<c8h

f(y) dydt. (2.19)
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Since, Kk
hf(y) ≥ p−kKh,βk . . .Kh,β1f(y), then

Kd+2k
h f(x) ≥ ch−d

∫
(t,s,y)∈Bh(x)

f(y − h
k∑
j=1

sjeβj ) dtdsdy (2.20)

where

Bh(x) =

(t, s, y) ∈ G×G× Rd, |x+ h
k∑
j=1

θjtjeβj − y| < c8h and

∀l = 1, . . . , k, y − h
k∑
j=l

θjsjeβj ∈ Ω

 . (2.21)

Using the new variable z = y − h
∑k

j=1 θjsjeβj ,

Kd+2k
h f(x) ≥ ch−d

∫
(t,s,z)∈Dh(x)

f(z) dtdsdz (2.22)

with

Dh(x) =

(t, s, z) ∈ G×G× Ω, |x+ h
k∑
j=1

(tj − sj)θjeβj − z| < c8h and

∀l = 1, . . . , k, z + h
l−1∑
j=1

θjsjeβj ∈ Ω

 . (2.23)

Since in the above integral, |tj − sj | < δj , taking the δj ’s small enough gives

Dh(x) ⊃

(t, s, z) ∈ G×G× Ω, |x− z| < c8h/2, ∀l = 1, . . . , k, z + h
l−1∑
j=1

θjsjeβj ∈ Ω

 . (2.24)

Now using (2.16), it follows that

Dh(x) ⊃ {(t, s, z) ∈ G×G× Ω, |x− z| < c8h/2} . (2.25)

Combined with (2.22), this yields the announced result.

Following the strategy of [4], introduce the Dirichlet form associated to the iterated kernel Mk
h :

Eh,k(u) =
〈(

1−Mk
h

)
u, u

〉
L2(Ω)

. (2.26)

Also, put Ω in a large box B =] − A/2, A/2[d and define an extension map E : L2(Ω) → L2(B)
which is continuous from H1(Ω) into H1(B) and vanishes far from Ω. This is possible since ∂Ω has
Lipschitz regularity. Finally, introduce the Dirichlet form on B:

Ẽh(u) = h−d
∫
B×B,|x−y|<h

|u(x)− u(y)|2 dxdy. (2.27)

Then Proposition 2.2 easily yields the following (see [4] for details).
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Lemma 2.3. There exists C0, h0 > 0 such that for any h ∈]0, h0] and any u ∈ L2(Ω),

Ẽh (E(u)) ≤ C0

(
Eh,N (u) + h2‖u‖2L2(Ω)

)
. (2.28)

Moreover, any function u ∈ L2(Ω) such that

‖u‖2L2(Ω) + h−2 〈(1−Mh)u, u〉L2(Ω) ≤ 1

admits a decomposition u = uL + uH with uL ∈ H1(Ω), ‖uL‖H1 ≤ C1, and ‖uH‖L2 ≤ C1h.

We are now in position to prove the first part of Theorem 2.1. First, assume that Mhu = u.
Then, it follows from Proposition 2.2, that

c1h
−d
∫

Ω×Ω,|x−y|<c2h
(u(x)− u(y))2 dxdy ≤

∫
Ω×Ω

(u(x)− u(y))2MN
h (x, dy) dx. (2.29)

On the other hand, the right hand side in the above inequality is equal to Eh,N (u) which is actually
equal to zero. Hence, u is constant and 1 is a simple eigenvalue.

Using the Markov property of MN
h , positivity of µh and the fact that ∂Ω has Lipschitz regularity,

easily yields

‖µh‖L∞→L∞ = µh(Ω) ≤ 1− c1h
−d min

x∈Ω

∫
Ω

1|x−y|<c2h dy < 1− δ′0 (2.30)

for some δ′0 > 0 independent of h. Working as in the proof of Theorem 1 in [4] shows that there
exists δ0 ∈]0, 1

2 [ such that for any u ∈ L2(Ω) and any n ≥ N ,

〈Mn
h u, u〉L2(Ω) ≥ (−1 + δ0)‖u‖2L2(Ω). (2.31)

Hence, the same holds true for n = 1 with a possibly different δ0.
To show that there is δ0 > 0 sufficiently small so that the spectrum of Mh is discrete in [1−δ0, 1]

it suffices to work as in the proof of Theorem 4.6 in [4], using again Proposition 2.2.
Similarly, the Weyl bound on the number of eigenvalues follows from Lemma 2.3 as in Lemma

4.8 in [4]. This proves Part i.
To prove the last part of the theorem, work on the Dirichlet form is needed. In the following,

denote Eh = Eh,1. Introduce the bilinear form associated with Eh:

Bh(u, v) = 〈(1−Mh)u, v〉L2(Ω), ∀u, v ∈ L2(Ω). (2.32)

A standard computation shows that Bh(u, v) = 1
p

∑p
j=1 Bj,h(u, v) with

Bj,h(u, v) =
1

4h

∫
x∈Ω,x+tej∈Ω,|t|<h

(u(x)− u(x+ tej)) (v(x)− v(x+ tej)) dxdt (2.33)

Lemma 2.4. Let θ ∈ C∞(Ω) be fixed and let (ϕh, rh) ∈ H1(Ω) × L2(Ω) be such that ‖rh‖L2(Ω) =
O(h) and ϕh converges weakly in H1(Ω) to some ϕ. Then

lim
h→0+

h−2Bh(rh, θ) = 0 (2.34)

and
lim
h→0+

h−2Bh(ϕh, θ) =
1
6p

∫
Ω

〈
∇Eϕ(x),∇Eθ(x)

〉
Cp dx. (2.35)
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Proof. To prove (2.34), observe that since θ is smooth,

(1−Mj,h)θ(x) =
h−1

2

∫
|t|<h,x+tej∈Ω

(θ(x)− θ(x+ tej)) dt

=
∂ejθ(x)

2h

∫
|t|<h,x+tej∈Ω

t dt+O(h2).
(2.36)

Denoting

ρh(x) =
∂ejθ(x)

2h

∫
|t|<h,x+tej∈Ω

t dt

observe that supp(ρh) ⊂ {x ∈ Ω, d(x, ∂Ω) < h} and ‖ρh‖L∞ = O(h). Hence ‖ρh‖L2 = O(h3/2) and
since ‖rh‖L2 = O(h), it follows that

h−2Bj,h(rh, θ) = h−2〈rh, (1−Mj,h)θ〉L2 = 〈h−1rh, h
−1ρh〉L2 +O(h) = O(h1/2) (2.37)

which goes to zero as h goes to zero.
To prove (2.35) observe that

θ(x+ tej)− θ(x) = tψ(t, x)

ϕh(x+ tej)− ϕh(x) = t

∫ 1

0
∂ejϕh(x+ tzej) dz

(2.38)

with ψ(t, x) smooth and ψ(0, x) = ∂ejθ(x). Hence

h−2Bj,h(ϕh, θ) =
1

4h3

∫
x∈Ω,x+tej∈Ω,|t|<h,z∈[0,1]

t2∂ejϕh(x+ tzej)ψ(t, x) dtdzdx

=
1
4

∫
x∈Ω,x+huej∈Ω,|u|<1,z∈[0,1]

u2∂ejϕh(x+ huzej)ψ(hu, x) dudzdx (2.39)

=
1
4

∫
x−huzej∈Ω,x+hu(1−z)ej∈Ω,|u|<1,z∈[0,1]

u2∂ejϕh(x)ψ(hu, x− huzej) dudzdx.

Taylor expansion of ψ shows that ψ(hu, x − huzej) = ∂ejθ(x) + O(h). Hence, for any δ > 0 and
any h ∈]0, 1],

h−2Bj,h(ϕh, θ) =
1
4

∫
x−huzej∈Ω,x+hu(1−z)ej∈Ω,|u|<1,z∈[0,1]

u2∂ejϕh(x)∂ejθ(x) dudzdx+O(h)

= Iδ(h) + Jδ(h) +O(h) (2.40)

with Iδ(h) equal to the above integral over d(x, ∂Ω) ≥ δ and Jδ(h) the integral over d(x, ∂Ω) < δ.
Then, by Cauchy–Schwartz, |Jδ(h)| ≤ C(θ)δ1/2‖ϕh‖H1 . On the other hand, for any h ∈]0, δ[,

Iδ(h) =
1
6

∫
x∈Ω,d(x,∂Ω)>δ

∂ejϕh(x)∂ejθ(x) dx

=
1
6

∫
x∈Ω

∂ejϕh(x)∂ejθ(x) dx+O
(
δ1/2‖ϕh‖H1

)
.

(2.41)
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Given ε > 0, it is easy to find δ > 0 small enough such that for any h ∈]0, δ[, |Jδ(h)| < ε and
|Iδ(h)− 1

6

∫
x∈Ω ∂ejϕh(x)∂ejθ(x)dx| < ε. Now make h→ 0+, δ being fixed, and use the fact that ϕh

converges weakly in H1 to get

lim
h→0+

h−2Bj,h(ϕh, θ) =
1
6

∫
Ω
∂ejϕ(x)∂ejθ(x) dx (2.42)

and the proof is complete.

To complete the proof of Theorem 2.1, denote |∆h| = h−2(1 −Mh). Let R > 0 be fixed and
observe that if νh ∈ [0, R] and fh ∈ L2(Ω) satisfy |∆h|fh = νhfh and ‖fh‖L2 = 1, then, thanks to
Lemma 2.3, fh can be decomposed as fh = ϕh + rh with ‖rh‖L2(Ω) = O(h) and ϕh bounded in
H1. Hence (extracting a subsequence if necessary) it may be assumed that ϕh weakly converges in
H1 to a limit ϕ and that νh converges to a limit ν. It now follows from Lemma 2.4 that for any
θ ∈ C∞(Ω),

1
6p

∫
Ω
〈∇Ef(x),∇Eθ(x)〉Cp dx = ν〈ϕ, θ〉L2 . (2.43)

Since θ is arbitrary, it follows that (−∆E− ν)ϕ = 0 and ∂n,Eϕ|∂Ω = 0. In fact, this also proves that
for any ε > 0 small, there exists hε > 0 such that for h ∈]0, hε], one has

Spec(|∆h|) ∩ [0, R] ⊂ ∪j [νj − ε, νj + ε] (2.44)

and
]Spec(|∆h|) ∩ [νj − ε, νj + ε] ≤ mj (2.45)

In fact, there is equality in (2.45). The following proof is a simplification of the one in [4]. Proceed by
induction on j: let ε > 0, small, be given such that for 0 ≤ νj ≤M+1, the intervals Iεj = [νj−ε, νj+ε]
are disjoint. Let (µhj )j≥0 be the increasing sequence of eigenvalues of |∆h|, σN =

∑N
j=1mj and

(ek)k≥0 an othonormal basis of eigenfunctions of −∆E such that for all k ∈ {1+σN , . . . , σN+1}, one
has (−∆E − νN+1)ek = 0. As 0 is a simple eigenvalue of both −∆E and |∆h|, clearly ν0 = µ0 = 0
and m0 = 1 = ]Spec(|∆h|) ∩ [ν0 − ε, ν0 + ε].

Suppose that for all n ≤ N , mn = ]Spec(|∆h|) ∩ [νn − ε, νn + ε]. Then by (2.44), for h ≤ hε,

µh1+σN
≥ νN+1 − ε. (2.46)

By the min-max principle, if G is a finite dimensional subspace of H1 with dim(G) = 1 + σN+1,

µhσN+1
≤ sup

ψ∈G,‖ψ‖=1
〈|∆h|ψ,ψ〉L2(Ω). (2.47)

Let G be the vector space spanned by the ek, 0 ≤ k ≤ σN+1. Then, dim(G) = 1 + σN+1 and it
follows from Lemma 2.4, for any k, k′ ≤ 1 + σN+1,

lim
h→0+

h−2Bh(ek, ek′) =
1
6p

∫
Ω
〈∇Eek(x),∇Eek′(x)〉Cp dx. (2.48)

Hence
lim
h→0+

h−2Bh(ψ,ψ) =
1
6p

∫
Ω
|∇Eψ(x|2 dx ≤ νN+1 (2.49)

for any ψ ∈ G with ‖ψ‖L2 = 1. Since G has finite dimension, a standard compactness argument
shows that there exists hε > 0 such that for any h ∈]0, hε] and any ψ ∈ G with ‖ψ‖L2 ≤ 1,

h−2Bh(ψ,ψ) ≤ νN+1 + ε. (2.50)

Therefore µσN+1 ≤ νN+1 + ε. Combining this with (2.46) and (2.45) gives mN+1 = ]Spec(|∆h|) ∩
[νN+1 − ε, νN+1 + ε]. The proof of Theorem 2.1 is complete.
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3 Total Variation Estimates

This section gives estimates on the convergence speed of the iterated kernel Mn
h (x, dy) towards

its stationary measure dy
V ol(Ω) . Recall that the total variation ‖µ − ν‖TV between two probability

measures µ and ν on Ω is defined by

‖µ− ν‖TV = sup |µ(A)− ν(A)| (3.1)

where the sup is taken over all measurable sets A. Equivalently,

‖µ− ν‖TV =
1
2

sup
f∈L∞,‖f‖L∞=1

|µ(f)− ν(f)|. (3.2)

Theorem 3.1. Assume that E is weakly incoming. Then there exists C > 0 and h0 > 0 such that
for all h ∈]0, h0] and all n ∈ N, the following estimate holds true, with g(h) the spectral gap studied
in Section 2:

sup
x∈Ω

∥∥∥∥Mn
h (x, dy)− dy

vol(Ω)

∥∥∥∥
TV

≤ Ce−ng(h). (3.3)

Proof. The proof is very close to the proof of Theorem 4.6 in [4] and is just sketched for the reader’s
convenience. Observe first that n ≥ h−2 can be assumed, since otherwise the estimate is trivial
thanks to the lower bound on the spectral gap.

Let Π0 be the othogonal projector in L2(Ω) on the constant functions. Observe that

2 sup
x∈Ω

∥∥∥∥Mn
h (x, dy)− dy

vol(Ω)

∥∥∥∥
TV

= ‖Mn
h −Π0‖L∞→L∞ . (3.4)

Using the spectral decomposition of Mh, let 0 < λ1,h ≤ · · · ≤ λj,h ≤ · · · ≤ h−2δ0 be such that
the eigenvalues of Mh in the interval [1− δ0, 1] are the 1− h2λj,h with associated orthonormalized
eigenfunctions Mh(ej,h) = (1− h2λj,h)ej,h.

Then write Mh −Π0 = Mh,1 +Mh,2 +Mh,3, so that the operators Mh,1, Mh,2 have kernels

Mh,1(x, y) =
∑

λ1,h≤λj,h≤h−α
(1− h2λj,h)ej,h(x)ej,h(y) (3.5)

Mh,2(x, y) =
∑

h−α≤λj,h≤h−2δ0

(1− h2λj,h)ej,h(x)ej,h(y) (3.6)

where α ∈]0, 2] is a small constant that will be chosen later. Then

2 sup
x∈Ω

∥∥∥∥Mn
h (x, dy)− dy

vol(Ω)

∥∥∥∥
TV

≤
3∑
j=1

∥∥Mn
h,j

∥∥
L∞→L∞ (3.7)

and terms on the right hand side must be estimated.
From (2.30), it is easy to prove that any eigenfunction Mh(u) = λu with λ ∈]1− δ0, 1] satisfies

‖u‖L∞ ≤ Ch−d/2‖u‖L2 . (3.8)

As in [4], using in particular the bound on the number of eigenvalues, we show that for n ∈ N,

‖Mn
h,2‖L∞→L∞ + ‖Mn

h,3‖L∞→L∞ ≤ C
(
(1− h2−α)n + (1− δ0)n

)
h−3d/2 (3.9)
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For n ≥ h−2, this implies that

‖Mn
h,2‖L∞→L∞ + ‖Mn

h,3‖L∞→L∞ ≤ Cαe−nh
2−α

. (3.10)

It remains to estimate Mn
h,1. Let Eα denote the space spanned by the eigenvectors ej,h such that

λj,h ≤ h−α. Then, thanks to Part ii of Theorem 2.1, dim(Eα) ≤ h−dα/2. As in [4], Lemma 2.3
shows that there exists α > 0 and p > 2 such that for any u ∈ Eα,

‖u‖2Lp ≤ Ch−2
(
Eh,N (u) + h2‖u‖2L2

)
. (3.11)

This gives the following Nash estimate, with 1
D = 2− 4

p > 0:

‖u‖
2+

1
D

L2 ≤ Ch−2
(
Eh,N (u) + h2‖u‖2L2

)
‖u‖

1
D
L1 ∀u ∈ Eα. (3.12)

This inequality allows an estimate of Mh,1 from L1 into L2 and this leads to ‖MkN
h,1 ‖L∞→L∞ ≤

Ce−kNg(h) for k ≥ h−2. As Mh is bounded by 1 on L∞ it follows that kN can be replaced by
n ≥ h−2 in this estimate, and the proof of Theorem 3.1 is complete.

4 Convergence of the Resolvants

Let us denote |∆h| = h−2(1 −Mh). Recall ∆E from (2.1). This section proves strong resolvent
convergence of |∆h| to ∆E. For background and consequences, see [13].

Theorem 4.1. Let z ∈ C \ [0,+∞[ and g ∈ L2(Ω). Then

lim
h→0+

∥∥(|∆h| − z)−1g − (−∆E − z)−1g
∥∥
L2(Ω)

= 0. (4.1)

Proof. Let z ∈ C \ [0,+∞[ and g ∈ L2(Ω) be fixed. For any h > 0 let fh ∈ L2(Ω) be the solution
of (|∆h| − z)fh = g. Hence

−z〈fh, fh〉L2 +
〈

1−Mh

h2
fh, fh

〉
L2

= 〈g, fh〉L2 . (4.2)

Since z /∈ [0,∞[ and |∆h| is a positive operator, it follows that ‖fh‖L2 ≤ dist(z, [0,∞[)−1‖g‖L2 is
bounded uniformly with respect to h. It follows from the above equation that there exists C0 > 0
such that

‖fh‖2L2 + h−2Eh(fh) ≤ C0‖g‖2L2 . (4.3)

It now follows from Lemma 2.4 that there exists C > 0 depending on z and ‖g‖L2 such that for
any h ∈]0, 1], we can write fh = ϕh + rh with ‖ϕh‖H1 ≤ C and ‖rh‖L2 ≤ Ch. Let f ∈ H1(Ω)
and (hk)k∈N be a sequence of positive numbers such that (ϕhk)k converges weakly to f in H1. Let
θ ∈ C∞(Ω) be fixed. Then

−z〈fhk , θ〉L2 + h−2
k Bhk(fhk , θ) = 〈g, θ〉L2 (4.4)

and taking the limit k →∞ it follows from Lemma 2.4 that

−z〈f, θ〉L2 +
1
6p

∫
Ω
∇Ef(x)∇Eθ(x) dx =

∫
Ω
g(x)θ(x) dx. (4.5)

Since θ is arbitrary, this implies (−∆E − z)f = g and ∂n,Ef|∂Ω = 0. Since, this is true for any
subsequence (hk), this shows that ‖fh − f‖L2 → 0 when h→ 0, which is exactly (4.1).
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5 Some Generalizations

Here we present a possible generalization of the previous results. It is still assumed that Ω is a
convex polytope in Rd. Suppose that E ⊂ Rd is endowed with a Borel probability measure µ. For
any e ∈ E, define

Ke,hf(x) =
1
2

∫
t∈[−1,1],x+hte∈Ω

f(x+ hte) dt (5.1)

and
Khf(x) =

∫
e∈E

Ke,hf(x) dµ(e). (5.2)

The associated Metropolis operator is defined by Mhf(x) = mh(x)f(x) + Khf(x) with mh(x) =
1−Kh(1).

Definition 5.1. Say that (E,µ) is weakly incoming to Ω if for any x0 ∈ ∂Ω there exists ε > 0,
θ ∈ {±1} and a measurable subset F ⊂ E such that µ(F ) > 0 and

c(x0 + θte) < c(x0) ∀t ∈]0, ε], ∀e ∈ F. (5.3)

Lemma 5.1. There exists some measurable subsets F1, . . . , Fd ⊂ E such that µ(Fj) > 0 for all j
and any (f1, . . . , fd) ∈ Πd

j=1Fj spans Rd. Moreover the sets Fj can be chosen with arbitrary small
diameters.

Proof. From the same argument as in remark following Definition 1.1, we can easily see that µ can
not be supported in an hyperplane of Rd. Let us prove by induction that for k = 1, . . . , d, there exists
F1, . . . Fk ⊂ E such that µ(Fj) > 0 for all j and for any (f1, . . . , fk) ∈ Πk

j=1Fj , rank(f1, . . . , fk) = k.
If k = 1, it suffices to take F1 ⊂ F \ {0} with µ(F1) > 0, which is possible thanks to the fact

that F is weakly incoming to Ω.
Assume that the property holds true at rank k−1 < d. There exists F1, . . . Fk−1 ⊂ E such that

µ(Fj) > 0 for all j and any (f1, . . . , fk−1) ∈ Πk−1
j=1Fj , H = span(f1, . . . , fk−1) has dimension k − 1.

Since supp(µ) is not contained in H, there exists Fk ⊂ F \ H with µ(Fk) > 0. Then F1, . . . , Fk
satisfy the property at rank k.

The fact that we can take diam(Fj) arbitrary small can be shown as follows. Let ε > 0 and
assume by contradiction that there exists j0 such that for any f ∈ Fj0 , µ(B(f, ε) ∩ Fj0) = 0. Then
any compact subset of Fj0 would have measure zero, which is impossible since µ(Fj0) > 0.

Introduce the following differential operators associated to the set E:

∇E : H1(Ω)→ L∞
(
E,L2(Ω)

)
(5.4)

defined by ∇Eu(e, x) = 〈∇u(x), e〉Cd for any (e, x) ∈ E × Ω;

divE : L∞
(
E,H1(Ω)

)
→ L2(Ω) (5.5)

defined by divEf(x) =
∫
E〈∇xf(e, x), e〉Cddµ(e) for any x ∈ Ω; and

∆E : H2(Ω)→ L2(Ω) (5.6)

given by ∆E = 1
6divE∇E .
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Define also the following trace operator:

γ0
E :
{
f ∈ L∞

(
E,H1(Ω)

)
, divEf ∈ L2(Ω)

}
→ H−

1
2 (∂Ω) (5.7)

by ∫
∂Ω
γ0
Ef(x)v|∂Ω(x) dσ(x) =

∫
Ω

divEf(x)v(x) dx+
∫
E

∫
Ω
f(e, x)∇Ev(e, x) dxdµ(e) (5.8)

for any v ∈ H1(Ω). Observe that if f ∈ L∞(E,C1(Ω)), then

γ0
Ef(x) =

∫
E
〈e, n(x)〉Cd f(x, e) dµ(e) (5.9)

where n(x) denotes the unit outgoing normal vector to the boundary ∂Ω at point x.
For u ∈ H1(Ω) such that ∆Eu ∈ L2(Ω), the function f = ∇Eu satisfies divEf ∈ L2(Ω). Hence,

the operator

γ1
E :
{
u ∈ H1(Ω), ∆Eu ∈ L2(Ω)

}
→ H−

1
2 (∂Ω) (5.10)

defined by γ1
Eu(x) = γ0

E∇Eu(x) is continuous.
Finally, introduce the following quadratic form on H1(Ω):

EE(u) =
1
6

∫
E

∫
Ω
|∇Eu(e, x)|2 dxdµ(e) ∀u ∈ H1(Ω). (5.11)

From Lemma 5.1 it follows that, since E is weakly incoming to Ω, there exists some subsets
F1, . . . , Fd with arbitrary small diameters and µ(Fj) > 0 such that any (f1, . . . , fd) ∈ F1 × · · · × Fd
spans Rd. Taking the diameter of the Fj sufficiently small, it is easy to show that there exists C > 0
such that for any u ∈ H1(Ω),

1
C
‖∇u‖2L2(Ω) ≤ EE(u) ≤ C‖∇u‖2L2(Ω). (5.12)

Then, the operator −∆E = −1
6divE∇E with domain D(−∆E) = {u ∈ H1(Ω), ∆Eu ∈

L2(Ω), γ1
Eu = 0} is the self-adjoint realization of the Dirichlet form EE . Moreover, it follows

from (5.12) that −∆E has compact resolvant. Denote its spectrum by ν0 = 0 < ν1 < ν2 < . . . and
by mj the multiplicity associated to νj . Observe that m0 = 1.

Theorem 5.2. Suppose that (E,µ) is weakly incoming to Ω, then the following hold true.

i) There exists h0 > 0, δ0 ∈]0, 1
2 [ and a positive constant C such that for any h ∈]0, h0], the

spectrum of Mh is a subset of [−1 + δ0, 1], 1 is a simple eigenvalue and Spec(Mh)∩ [1− δ0, 1]
is discrete.

ii) For any h ∈]0, h0] and 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Mh in [1− h2λ, 1] (with

multiplicity) is bounded by C(1 + λ)d/2.

iii) For any R > 0 and ε > 0 such that νj+1− νj > 2ε for νj+2 < R, there exists h1 > 0 such that
one has for all h ∈]0, h1],

Spec
(

1−Mh

h2

)
∩]0, R] ⊂ ∪j≥1[νj − ε, νj + ε] (5.13)

and the number of eigenvalues of 1−Mh
h2 in the interval [νj − ε, νj + ε] is equal to mj.
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Here are two examples of (E,µ) which are weakly incoming to Ω. The first is the case where
E = {e1, . . . , ep} is discrete and µ is simply the measure 1

p

∑p
j=1 δe=ej . Then it suffices to assume

that E is weakly incoming to Ω in the sense of Definition 1.1. Moreover, in that case the conclusion
of Theorem 5.2 are exactly those of Theorem 2.1.

A second example is the following. Let E be equal to the sphere Sd−1 and µ = dσd be the surface
measure. Assume that ρ : Sd−1 → R+ is a continuous function such that

∫
Sd−1 ρ(ω)dσd(ω) = 1 and

let µ = ρ(ω)dσd(ω). Then (E,µ) will be weakly incoming to Ω iff there exists a family of vectors
e1, . . . , ep ∈ supp(ρ) such that (e1, . . . , ep) is weakly incoming in the sense of Definition 1.1. For
instance, if ρ is strictly positive on Sd−1 then these assumptions are automatically satisfied.

The proof of Theorem 5.2 is very close to that of Theorem 2.1 and only the main steps are
given. The following proposition is a version of Lemma 1.3 adapted to the present setting.

Proposition 5.3. Assume that (E,µ) is weakly incoming to Ω, let x0 ∈ Ω and denote k = c(x0).
There exists ε > 0 and some subsets F1, . . . , Fk ⊂ E such that µ(Fi) > 0 for all i = 1, . . . , k and

• there exists r0 > 0 and I ⊂ {1, . . . ,m} with ]I = k such that

Ω ∩B(x0, r0) =
(
∩ki∈IH+

i

)
∩B(x0, r0); (5.14)

• there exists θ1, . . . , θk ∈ {±1} and a bijection {1, . . . , k} 3 n 7→ in ∈ I such that for any
n = 1, . . . , k and any fn ∈ Fn,

θnfn is strictly incoming to Hin (5.15)

and
θnfn is incoming to Him ∀m > n. (5.16)

Moreover the sets F1, . . . , Fk can be chosen with arbitrary small diameter.

Proof. First, it is clear that (5.14) holds true. We prove (5.15) and (5.16) by induction on k = c(x0).
For k = 0 there is nothing to prove.

Assume now that the property holds true for all x′0 such that c(x′0) ≤ k − 1 and suppose that
c(x0) = k. Since (E,µ) is weakly incoming to Ω, there exists F ⊂ E, θ1 ∈ {±1} and ε > 0 such
that c(x0 + tθ1f) < c(x0) for all t ∈]0, ε]. Assume without loss of generality that θ1 = 1. Since
µ(F ) > 0, there exists f0 ∈ F such that for all ρ > 0, µ(B(f0, ρ) ∩ F ) > 0 and

c(x0 + tf) < c(x0) ∀f ∈ B(f0, ρ) ∩ F, ∀t ∈]0, ε]. (5.17)

In particular, there exists q1 ∈ {1, . . . , k} and i1, . . . , iq1 ∈ I such that

f0 is strictly incoming to Hiq ∀q = 1, . . . , q1 (5.18)

and
f0 is parallel to Hiq ∀q ≥ q1 + 1. (5.19)

Let Fq = B(f0, ρ) ∩ F with ρ > 0 for q = 1, . . . , q1. Then µ(Fq) > 0 and it follows from (5.18)
that for ρ small enough, any f ∈ Fq is strictly incoming to Hiq . Moreover, thanks to (5.17), any
f ∈ Fq is incoming to Hi for i ∈ I \ {i1, . . . , iq1}. Then we can use the induction hypothesis with
x′0 = x0 + εf0 close to x0 such that c(x′0) = k − q1 < k to build Fq1+1, . . . , Fk. The statement
concerning the diameter of the Fj is a trivial consequence of the construction.
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Corollary 5.4. Assume that (E,µ) is weakly incoming to Ω and let x0 ∈ Ω. Then there exists
r0 > 0, ε > 0, F ⊂ E with µ(F ) > 0 and θ ∈ {±1} such that

∀f ∈ F, ∀x ∈ B(x0, r0) ∩ Ω, ∀t ∈ [0, ε], x+ tθf ∈ Ω (5.20)

Using these results and working as in Section 2 easily proves the following.

Proposition 5.5. There exists N ∈ N and c1, c2 > 0 such that

MN
h (x, dy) = µh(x, dy) + c1h

−d1|x−y|<c2h dy (5.21)

where for all x ∈ Ω, µh(x, dy) is a positive Borel measure.

Proof. The starting point of the proof is to observe that for any k ∈ N and any non-negative
function f ,

Kk
hf(x) ≥

∫
e1∈F1

. . .

∫
ek∈Fk

Kh,e1 . . .Kh,ekf(x) dµ(ek) . . . dµ(e1) (5.22)

for any F1, . . . , Fk ⊂ E. Then the proof is the same as the proof of Proposition 2.2. In fact, (2.13)
remains valid thanks to Lemma 5.1. Then we can mimick the end of the proof, using the fact that
in Proposition 5.3 the set Fj can be chosen with arbitrary small diameter. Details are left to the
reader.

Proposition 5.5 implies a lemma analogous to Lemma 2.3 for the operator Mh considered in
this section. In particular, any function u ∈ L2(Ω) satisfying

‖u‖2L2 + 〈(1−Mh)u, u〉L2 ≤ 1 (5.23)

admits a decomposition u = uL + uH with ‖uL‖H1 ≤ 1 and ‖uH‖L2 = O(h). Using Proposition 5.3
and the generalization of Lemma 2.3 gives Parts i and ii of Theorem 5.2.

Part iii is implied by the following lemma (where Bh still denotes the Dirichet form associated
to Mh).

Lemma 5.6. Let θ ∈ C∞(Ω) be fixed and let (ϕh, rh) ∈ H1(Ω) × L2(Ω) be such that ‖rh‖L2(Ω) =
O(h) and ϕh converges weakly in H1(Ω) to some ϕ. Then

lim
h→0+

h−2Bh(rh, θ) = 0 (5.24)

and
lim
h→0+

h−2Bh(ϕh, θ) =
1
6

∫
E

∫
Ω
∇Eϕ(e, x)∇Eθ(e, x) dxdµ(e). (5.25)

Proof. The proof is the same as that of Lemma 2.4.

Total variation estimates for rates of convergence now follow as in Section 3.
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