QUADRATIC AND PINCZON ALGEBRAS
Résumé
Given a symmetric non degenerated bilinear form b on a vector space V , G. Pinczon and R. Ushirobira defined a bracket { , } on the space of multilinear skewsymmetric forms on V. With this bracket, the quadratic Lie algebra structure equation on (V, b) becomes simply {Ω, Ω} = 0. We characterize similarly quadratic associative, commutative or pre-Lie structures on (V, b) by the same equation {Ω, Ω} = 0, but on different spaces of forms. These definitions extend to quadratic up to homotopy algebras and allows to describe the corresponding cohomologies.
Domaines
Algèbres quantiques [math.QA]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...