Quality-driven and real-time iris recognition from close-up eye videos - Archive ouverte HAL
Article Dans Une Revue Signal, Image and Video Processing Année : 2016

Quality-driven and real-time iris recognition from close-up eye videos

Résumé

This paper deals with the computation of robust iris templates from video sequences. The main contribution is to propose (i) optimal tracking and robust detection of the pupil, (ii) smart selection of iris images to be enrolled, and (iii) multi-thread and quality-driven decomposition of tasks to reach real-time processing. The evaluation of the system was done on the Multiple Biometric Grand Challenge dataset. Especially we conducted a systematic study regarding the fragile bit rate and the number of merged images, using classical criteria. We reached an equal error rate value of 0.2% which reflects high performance on this database with respect to previous studies.
Fichier principal
Vignette du fichier
Nemesin2014.pdf (2.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01276600 , version 1 (20-02-2016)

Identifiants

Citer

Valérian Némesin, Stéphane Derrode. Quality-driven and real-time iris recognition from close-up eye videos. Signal, Image and Video Processing, 2016, 10 (1), pp.153-160. ⟨10.1007/s11760-014-0720-x⟩. ⟨hal-01276600⟩
271 Consultations
290 Téléchargements

Altmetric

Partager

More