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Abstract This paper deals with the computation of robust
iris templates from video sequences. The main contribution
is to propose (i) optimal tracking and robust detection of the
pupil, (ii) smart selection of iris images to be enrolled, and
(iii) multi-thread and quality-driven decomposition of tasks
to reach real-time processing. The evaluation of the sys-
tem was done on the Multiple Biometric Grand Challenge
dataset. Especially we conducted a systematic study regard-
ing the fragile bit rate and the number of merged images,
using classical criteria. We reached an equal error rate value
of 0.2% which reflects high performance on this database
with respect to previous studies.

Keywords Iris biometrics ·Quality-driven iris-code fusion ·
Real-time iris enrollment ·MBGC dataset evaluation

1 Introduction

Iris biometric is generally accepted as one of the most reli-
able method for human identification, due to the high vari-
ability in iris texture and its stability over time [11]. How-
ever most existing iris recognition systems impose strong
acquisition constraints which limit its widespread for large-
public applications: users have to present their eye at close
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distance (about 0.3m from the device) to ensure good fo-
cusing and quality of captured images. The iris biometric
research community is now interested in setting less con-
strained environments, and in designing systems that are able
to capture iris at distance and on the move, which can help
improving user acceptability and collectability [10]. Addi-
tionally to problems encountered in still-device systems, video-
based ones further face motion blur and lack of resolution.
A solution is to adapt iris segmentation methods [22,7] for
noisy images or non-ideal environments to the video con-
text.

Nevertheless, in video-based systems, one aims at ex-
ploiting numerous views of the same iris to get one iris-code
that is more robust (in term of recognition performance) than
the iris-code obtained from the best-quality iris image in the
video. Two main families of methods for merging iris-codes
from close-up eye videos were proposed.

The first family considers the direct fusion of gray-level
pixels of polar iris texture to get a super-resolved iris image
on which the iris-code is computed [23]. This idea is further
exploited and evaluated by Nguyen et al. [19] who intro-
duce a quality driven fusion. Images have to be precisely
registered in order to get ride of iris scale and rotation, oth-
erwise important characteristics such as furrows and crypts
are weakened.

The second family of methods, to which our algorithm
belongs, tries to merge iris-codes obtained from a single im-
age selected according to a quality criterion, in order to get
one iris-code for a video. In their works, Hollingsworth et
al. point out the existence of “fragile bits” in iris-code, i.e.
bits which frequently switch between 0 and 1. As these bits
can degrade recognition performances, they propose to use
in [9] a distance that takes into account the number of mutual
fragile bits. This family of methods showed more promising
than the previous, mainly because of mis-alignement in reg-
istering.

In this context, this paper proposes three main contribu-
tions:

1. A robust segmentation and an optimal tracking is pro-
posed for the pupil detection.

2. The fusion of iris-codes is quality-driven by merging the
score metrics proposed in [13] and in [25].

3. The algorithm runs in real-time (i.e 25 Frame Per Sec-
ond (FPS)), by exploiting multi-thread decomposition of
tasks and a smart selection of highest-quality iris images.

The evaluation of the proposed strategy is performed
on the Multiple Biometric Grand Challenge (MBGC) portal
dataset [21] using classical criteria: (i) ROC curve, (ii) Equal
Error Rate (EER), (iii) False Rejection Rate (FRR) at low
False Acceptance Rate (FAR), and (iv) top-rank histogram.
We first study the influence of the number of merged iris-
codes, and then the impact of masking more fragile bits. De-
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(a) Original image (b) Pupil, iris and eyelids segmen-
tation

(c) Iris polar texture (d) Iris-code

Fig. 1: Illustration of enrollment steps for iris coding.

scribed method is then compared to (i) the classical highest-
quality image selection approach [26], (ii) the quality-driven
super-resolution method [19,20], (iii) the merged iris-code [8]
and (iv) the merged iris-code with the “fragile bits distance” [9].

The remainder of the paper is organized as follows. Iris
enrollment and fusion algorithms are presented in Section 2.
A multi-threaded version of the entire algorithm to reach
real-time processing is described in Section 3. Results of
systematic experiments on the MBGC database are anal-
ysed in Section 4. Finally, conclusions and further works are
sketched in Section 5.

2 Quality-driven iris-code fusion

The overall algorithm for segmenting pupil, selecting iris
and merging iris-codes is sketched in [18]. The method con-
sists of two main steps: the first one is dedicated to the iris
enrollment procedure, and the second one is concerned with
the iris-code fusion procedure and quality assessment.

2.1 Iris enrollment

Pupil detection

Usually, pupil is assumed to be a dark and homogeneous re-
gion of the image. To perform its segmenation and to reject
false candidates, the following method is applied on a Re-
gion Of Interest (ROI), which is given by a Pairwise Kalman
tracking (see section 4):

– As suggested by [15], the modes of the ROI histogram
are detected using ROI-histogram minima, denoted si.
Moreover, homogeneous regions are detected by adap-
tative thresholding.

– In order to reduce processing time, the following routine
is used for the five lower histogram minima. The image

is binarized according to si. The mask is then combined
with the homogeneous regions. Hence, the smallest ob-
jects are deleted and closely linked regions separated
by a morphological opening operation. Each remaining
connex component of the image is labeled as a pupil
candidate and its contour resampled to P = 64 points.
Following [6], a RANSAC algorithm is then used to de-
termine the ellipse which best-fits the external contour.
Our RANSAC algorithm makes use of the following pa-
rameters: a subsample of P ′ = 32 points, 50 RANSAC
iterations, a distance threshold of dthreshold = 0.2rpupil

and a valid point threshold of P ′′ = 16 where rpupil =[[
apupil

]2
+
[
bpupil

]2] 1
2

.
– The best-fitted region is selected as the last pupil candi-

date. If the mean distance between its ellipse and contour
is too high (d′threshold > 0.1rpupil), then pupil segmen-
tation is assumed failed.

Iris localization and eyelid detection

To find iris circle, we use J. Daugman’s integro-differential
operator [4] whose result is illustrated by the blue circle in
Figure 1b. In order to segment eyelids or iris edges, we make
use of a parabolic integro-differential operator, described
in [12], using the parametric equation{
x(t) = xi + t cos θ + (a(t− xi)2 + y0) sin θ

y(t) = yi − t sin θ + (a(t− xi)2 + y0) cos θ
(1)

where xi, yi, ri are the iris circle coordinates and radius, θ
varies from−15◦ to 15◦ and from 165◦ to 195◦, a goes from
0 to (2ri)

−1 and y0 goes from rp to ri for upper and lower
eyelids. Eyelashes are detected using the same threshold as
the one used for pupil detection.

Iris-code computation

Finally, the iris-code is mainly built according to Masek’s
algorithm [16]. First, the iris texture (i.e. the annular re-
gion between the pupil and the iris outer boundary) is un-
wrapped in the polar system, as illustrated in 1c. We set
the resolution to classical values of 200 angular directions
and 20 radii. Then the polar texture is filtered using 1D log-
Gabor wavelets on each “circle”. Following the Daugman’s
scheme, the complex-valued array is quantized according to
phase-quadrants to get the so-called iris-code. An example
is given in figure 1d (red regions denote the occlusion mask).

2.2 Iris-code fusion

Here we intend to describe how fusion of iris-codes is per-
formed and how fragile bits are detected. The fusion tech-
nique used in this work, inspirated from [8], takes several
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Iris−code fusion

(b) 4 highest−quality images and their respective iris−codes

(c) Merged iris−code (d) Fragility map

(a) 04233d1773 video

Iris enrollment and quality assessment

#250 #251 #136 #138

Q = 62% Q = 62% Q = 61% Q = 61%

Fig. 2: Quality-fusion assessment scheme.

iris images and their corresponding iris-code as inputs. Fu-
sion technique is composed of two main steps:

1. Image selection: for each image which passed iris en-
rollment, a focus score Qfocus is computed using Kang
and Park’s metric [13]. This score is then multiplied by
the usable iris texture area (cf. [25]), which gives the
score Qscore. The fusion is performed on the P highest-
scored iris-codes. Figure 2b illustrates the selection.

2. Iris-code fusion and detection of fragile bits: The iris-
codes are registered with the highest-scored iris-code and
then their weighted Qscore-mean is computed. It gives
a “fuzzy”, intensity-valued iris-code Î(r, θ). Finally, a
classical binary iris-code is obtained by thresholding Î(r, θ)
with respect to 0.5, and its associated fragility map is
computed according to

f(r, θ) = 1− 2×
∣∣∣Î(r, θ)− 0.5

∣∣∣ (2)

Binary iris-code and fragility map for the MBGC video
#04233d1773 are respectively given in figures 2c and 2d.

3 “Real-time” iris template processing

This section is intended to desbribe a “real-time” version of
the iris enrollment algorithm described in Section 2. Three
techniques are combined to achieve the goal : First, an opti-
mal Kalman-like tracking algorithm follows the pupil. Sec-
ond, a smart selection of high quality images reduces the
number of frames to be enrolled. Third, segmentation tasks
are decomposed into four threads to divide processing time.

Fig. 3: Example of pupil ROI from the MBGC 04470d1628
video.

3.1 Pairwise Kalman tracking

To predict pupil positions and radii in a video, the following
Kalman-like system of equations is used(
xn+1

zn

)
︸ ︷︷ ︸

tn+1

=

(
F x,x F x,z

Iz,z 0

)
︸ ︷︷ ︸

F

(
xn
zn−1

)
︸ ︷︷ ︸

tn

+

(
ωxn+1

ωzn+1

)
︸ ︷︷ ︸

ωn+1

(3)

where

xn =

xpupiln − w/2
ypupiln − h/2

rpupiln


with w and h represent respectively the width and the height
of the image and ωn+1 and where t0 are respectively dis-

tributed according to two Gaussian lawsN
(
0,Q =

(
Qx,x 0

0 0

))
and N (t̂0,Q0) corresponds to the hidden states, and zn to
the observed states. Observations are given by the pupil seg-
mentation algorithm. In fact, this model is more general that
the classical Kalman system, and belongs to the family of
Pairwise Kalman Filter (PKF), see [5,2] for details. Exact
and robust prediction and filtering equations are reported
in [17].

Let us denote x̂n|n−1 = (x̂pupiln|n−1, ŷ
pupil
n|n−1, r̂

pupil
n|n−1)

T the
expectations and σn|n−1(xpupil), σn|n−1(ypupil), σn|n−1(rpupil)
the standard deviations of the predicted position and radius.
The rectangular Region Of Interest (ROI), in which the pupil
is searched for, is defined by:
xROI = x̂pupiln|n−1 −

wROI

2

yROI = ŷpupiln|n−1 −
hROI

2

wROI = 2r̂pupiln|n−1 +N
[
σn|n−1(x

pupil) + σn|n−1(r
pupil)

]
hROI = 2r̂pupiln|n−1 +N

[
σn|n−1(y

pupil) + σn|n−1(r
pupil)

]
(4)

where N is a parameter set to 4 in our experiments. An ex-
ample of ROI is drawn in green in Figure 3.

The model (3) is parameterized by matricesF ,Q, which
are difficult to set manually. So, we make use of an auto-
matic learning algorithm [17] on the MBGC video #02463d1980.
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Table 1: Pairwise Kalman parameters learned from one
video sequence.

θ̂
(EM)

Fx,x

 1.59 0.08 −0.25
0.05 1.31 −0.17
−0.04 0.15 0.62


Fx,z

−0.61 −0.07 0.20
−0.06 −0.32 0.11
0.02 −0.15 0.26


Qx,x

5.91 0.45 2.22
0.45 9.68 2.95
2.22 2.95 10.55



The so-estimated parameters are reported in Tab 1 and re-
used for all MBGC videos. The model seems to fit well data
since values in process covariance matrix Qx,x are small
with respect to images size (640× 480 for MBGC dataset).

During hocking, pupils are frequently lost due to out of
focus, closed eyelids... So, the model has to take into ac-
count the skipped frames to predict the ROI at frame n + p

from valid pupil data at frame n. Skipping p frames is equiv-
alent to replace F andQ parameters in system (3) by:

F ′p = F p+1, (5)

Q′p =

p∑
r=0

F rQ [F r]
T
, (6)

see Appendix A.
Tracking can significantly reduce segmentation times.

Indeed, using a 2.3Ghz dual-core i3 processor, pupil seg-
mentation takes about 100 ms without tracking and about
55 ms with tracking.

3.2 Smart selection and multi-threading algorithm

The algorithm described in Section 2 is suitable for paral-
lelization with the help of a smart selection of images, ac-
cording to the following four tasks:

1. Acquistion thread: The first thread acquires frame from
the video stream or capture device and computes the fo-
cus score Qfocus. Acquired images are then buffered
for being exploited by the second thread. This thread is
blocked to f FPS.

2. Pupil thread: The second thread, depicted in Figure 4a,
retrieves buffered images to segment and track the pupils.
If the segmentation has succeeded, image and pupil char-
acteristics are buffered for being exploited by the third
thread.

3. Iris thread: The third thread, illustrated on Figure 4b,
retrieves buffered data to localize iris, eyelids, eyelashes,
spots, and finally to construct the iris-code. If the quality

ROI = whole image

segment pupil

buffer pupil data

predict pupil position

reset ROI

read data
from acquisition buffer

fail

sucess

pupil data

(a) Pupil thread

read data
from pupil buffer

segment iris, eyelids
and eyelash

unwrap iris texture
and calculate iris code

iris code, quality score

compute quality score

buffer iris data

(b) Iris thread

Fig. 4: Flowcharts of the two main threads for the iris enroll-
ment.

yes

yes

no

no

buffer is empty?

buffer is locked?

copy highest−scored data
from buffer

erase highest−scored data
in buffer

data, score

unlock buffer

lock buffer

(a) Buffer reading

buffer is locked?

lock buffer

buffer is full?

score>min score?

erase lowest−scored data
in buffer

copy data to buffer

unlock buffer

yes

yes

no

no

yes

no

data, score

(b) Buffer writting

Fig. 5: Flowcharts of buffer running modes.

score Qscore is above a given threshold, then the iris-
code is buffered for its exploitation by the fourth thread.

4. Fusion thread: The last thread fuses the highest-quality
iris-codes, according to Qscore in order to obtain the
fragility map 2c and merged iris-code 2d.

For acquistion and pupil threads, the buffers are sorted
according to Qfocus whereas the iris thread is sorted with
respect to Qscore. As the strategy is clamped by the buffer
capacities, each new entry is sorted according to its score
and only highest-quality images are selected for enrollment.
Figure 5 sketches the writting and reading modes for each
buffer.
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When FPS is locked to f=25, about 75% of the pupils
are detected and about 15% of the irises are enrolled. When
using sequential method (i.e. without buffer), only 13% of
pupils and irises are segmented, unrelated to theirs quality
or focus scores.

4 Performance evaluation on MBGC database

Iris verification experiments have been conducted on the MBGC
dataset [21]. This dataset consists of 986 close-up eye videos
and 8589 NIR iris still-images of 137 individuals. Iris videos
and individual images are segmented and merged using the
algorithm described in Sections 2 and 3. The still-image
dataset is used to enroll and label each individual, whereas
the video dataset is used to test the recognition performance
of the proposed method against the image dataset.

The method presented above has succeeded to enroll 99.8%
of videos1 and all iris classes (each iris class contains at least
one image, but most classes contain more than 10 images).
Regarding the still-image dataset, 96.7% of images were en-
rolled. We verified visually that defeated images are either
severely occluded or very blurred or very poor-contrasted.

Once both datasets are enrolled, we matched iris tem-
plates from video dataset to ones from still-image dataset
using Hamming distance. The results are saved in the form
of Detection Error Trade-off (DET) plots and top-rank his-
tograms and evaluated by 2 criteria: Equal Error Rate (EER)
and False Rejection Rate (FRR) when the False Acceptance
Rate (FAR) is set to 10−6.

Two experiments were done to estimate the influence of
the number of merged iris-codes and to determine the im-
pact of masking fragile bits on recognition performances.
Finally, these results were compared with three state-of-the-
art methods: one based on the iris texture fusion and two
other ones based on iris-code fusion without score assess-
ment.

4.1 Influence of the number of merged iris-codes

The first experiment has been conducted to determine (1)
if there is some interest in merging iris-codes, and, if yes,
(2) if there is an optimum number of iris-codes to merge
before performances start to degrade. Indeed, as the fusion
includes more and more images, and since we consider im-
ages in their scoring order, the fusion process adds lower
quality images. To verify these points, we applied the fusion
technique with a number of merged iris-codes varying from
1 to 30 frames. The distribution of imposture and genuine
distances are reported in Figure 6 for 1, 5, 10 and 30 merged
iris-codes. The top-ranks are given in Figure 7 whereas ROC

1 Only videos #05344v27 and #05416v25 failed to enroll.

0

0.05

0.10

0.15

0.20

0.10 0.20 0.30 0.40 0.50

 σ = 0.062 
η = 0.27 

 σ = 0.015 
η = 0.45 

d' = 3.99 

(a) Highest-quality image
0

0.05

0.10

0.15

0.20

0.10 0.20 0.30 0.40 0.50

 σ = 0.051 
η = 0.22 

 σ = 0.016 
η = 0.45 

d' = 6.09 

(b) 5 images

0

0.05

0.10

0.15

0.20

0.10 0.20 0.30 0.40 0.50

 σ = 0.049 
η = 0.20 

 σ = 0.016 
η = 0.45 d' = 6.86 

(c) 10 images
0

0.05

0.10

0.15

0.20

0.10 0.20 0.30 0.40 0.50

 σ = 0.043 
η = 0.17 

 σ = 0.017 
η = 0.44 

d' = 8.26

(d) 30 images

Fig. 6: Distance distributions for the highest quality image
(a), the fusion of 5 (b), of 10 (c) and of 30 (d) highest-quality
images. Impostor distance distributions are in red, genius
distance distributions are in green. η, σ and d′ report the
estimated mean, standard deviation of distributions and the
statistical metric between distributions d′ = |ηg−ηi|√

0.5(σ2
i+σ

2
g)

.

curves and EER and FRR at FAR=10−6 curves are reported
in Figures 8 and 9 respectively.

The keypoint is that all indicators confirm an improve-
ment of recognition performances when the number of merged
iris-codes goes from 1 to 10. Regarding distance distribu-
tions, the separation between genius and impostor distri-
butions increases when the number of merged images in-
creases. As seen in the top-rank histograms, irises are bet-
ter classified when the number of merged images increases.
Moreover, the FRR at FAR=10−6 continues to decrease when
merging beyond 10 iris-codes. Finally, the fusion of several
frames outperforms the use of the only highest-quality im-
age: EER decreases from 1.58% to 0.2% (12 images), and
FFR at FAR=10−6 decreases from 40% to 0.8% (22 im-
ages). In conclusion, merging a large number of frames can
have a real interest for high-security applications.

4.2 Influence of fragile bits

The second experiment was conducted to determine the im-
pact of masking fragile bits on iris recognition performances,
using the fragility map (P% of most fragile bits are masked
and ignored during the hamming distance computation). Mask-
ing more and more fragile bits reduces the information on
iris texture taking into account by iris-code and so can dete-
riorate performances. Distance distributions for Fragile Bit
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Fig. 7: Rank of true class when classification have failed for
the highest-quality image (a), the fusion of 5 (b), of 10 (c)
and of 30 (d) highest-quality iris-codes.
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Fig. 8: DET plots: influence of the number of merged iris-
codes on recognition performances.

Rates (FBR) of 0%, 15%, 30% and 45% are reported in Fig-
ure 10 when using the 10 highest-quality images. The evo-
lution of EER and FRR at FAR=10−6 for different numbers
of merged iris-codes is shown in Figure 11.

Globally, merging 10 highest-quality iris-code always
gives the best EER whatever the FBR. The best EER (0.2%)
is reached when merging 10 iris-codes from a FBR of 20%,
and when fusing above 20 iris-codes from a FBR of 30%.
Globally, merging more and more iris-codes improves FRR
at FAR=10−6 whatever the FBR. It can be pointed out that
the best FFR at FAR=10−6 is obtained only when merging
above 20 iris-codes for a 20%-FBR. Regarding the distance
distributions, masking fragile bits tends to reduce the genius
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Fig. 9: Evolution of EER (a) and FRR at FAR=10−6 (b) with
respect to the number of merged iris-codes.
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Fig. 10: Distance distributions for the fusion of 10 iris-codes
with different Fragile Bit Rates.
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Fig. 11: Evolution of EER (a) and FRR at FAR=10−6 (b)
with respect to the FBR.

distance mean and covariance, and to increase variance of
imposture distances.

So, two main conclusions can be drawn from the exper-
iment on the MBGC datasets:
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Table 2: Comparison of EERs obtained on MBGC iris
datadry.

[19] [20] [8] [9] (20 radii)
∼ 0.80% ∼ 0.50% ∼ 0.87% ∼ 0.80%

[9] (10 radii) this work (20 radii)
∼ 0.29 0.20%

1. for large-public applications, it is advisable to merge
about 10 iris-codes with a fragile bit rate of 20%.

2. For high-security applications, it is recommended to merge
more than 20 iris-codes with a fragile bit rate of 20%.

4.3 Comparison with other fusion techniques

The method presented here was compared to four other stud-
ies

– The first paper [19] depictes a super-resolution iris tex-
ture method to improve recognition performances.

– The second one [20] proposes a super-resolution method
of iris features computed from 2D-Gabor wavelets.

– The third one [8] proposes to merge iris-codes without
quality assessment and to mask the frequently changing
bits.

– The fourth one [9] makes use of a fragile bit distance,
which improves third paper results.

Table 2 reports EER for the best results obtained from the
four methods and our algorithm. Our method shows a drastic
reduction of the EER.

5 Conclusion

In this paper, we proposed a “real-time” quality-based iris-
code fusion algorithm to improve iris recognition perfor-
mance from close-up eye videos. Real-time processing (i.e.
25 FPS) was achevied by multi-thread decomposition of the
processing chain and a quality-based selection of frames to
be further processed by the threads. A fragility map was as-
siocated to each iris-code, which measures the confidence of
each bits to be 0 or to be 1.

The algorithm was systematically evaluated on the MBGC
database [21] with respect to the number of merged iris-
codes and the influence of the fragile bit rate. The proposed
fusion process improves performances significantly. More-
over, the adequate parameter values for high-security and
large-public applications have been identified. Performances
have also been compared with three competitive methods
and our algorithm divides the EER by 1.5 to 4.

The log-Gabor wavelets were choosen for then high per-
formances, widespread and low complexity. Nevertheless,
higher performances could have been obtained by using bi-
orthogonal wavelets [24,1]. Moreover, the Hamming dis-
tance can be replaced by another matching criteria [3]. Also,
the RANSAC based algorithm used to fit the pupil with an
ellipse proved to be very efficient; a comparison with a re-
cently published snake-based method [14] is of great inter-
est.

Acknowledgements Authors would like to thank DGA (French Di-
rection Générale de l’Armement) and CNRS for financial support.

A Proof of equations (5) and (6)

Let them prove by recurrence:

– For p = 0, the proof is trivial (F ′0 = F andQ′0 = Q′)
– Let assume (5) and (6) true for p− 1. Then,

tn+p = F ′p−1tn + ωn,p−1 (7)

where ωn,p−1 follow the Gaussian law N (0, Q′p−1). Let them
prove for p:

Proof

tn+p+1 = FF ′p−1tn + F ωn,p−1︸ ︷︷ ︸
∼N(0,Q′

p−1
)

+ ωn+p+1︸ ︷︷ ︸
∼N(0,Q)

= F p+1tn + Fωn,p−1︸ ︷︷ ︸
∼N(0,FQ′

p
F T )

+ ωn+p+1︸ ︷︷ ︸
∼N(0,Q)

= F ′ptn + Fωn,p−1︸ ︷︷ ︸
∼N(0,F [

∑p−1
r=0

F rQ[F r]T ]F T )

+ ωn+p+1︸ ︷︷ ︸
∼N(0,Q)

= F ′ptn + Fωn,p−1︸ ︷︷ ︸
∼N(0,

∑p
r=1

F rQ[F r]T )

+ ωn+p+1︸ ︷︷ ︸
∼N(0,Q)

= F ′ptn + Fωn,p−1 + ωn+p+1︸ ︷︷ ︸
∼N(0,

∑p
r=0

F rQ[F r]T )

= F ′ptn + ωn,p+1︸ ︷︷ ︸
∼N(0,Q′

p
)
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