Online active learning of decision trees with evidential data - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2016

Online active learning of decision trees with evidential data

Résumé

Learning from uncertain data has been drawing increasing attention in recent years. In this paper, we propose a tree induction approach which can not only handle uncertain data, but also furthermore reduce epistemic uncertainty by querying the most valuable uncertain instances within the learning procedure. We extend classical decision trees to the framework of belief functions to deal with a variety of uncertainties in the data. In particular, we use entropy intervals extracted from the evidential likelihood to query selected uncertain querying training instances when needed, in order to improve the selection of the splitting attribute. Our experiments show the good performances of proposed active belief decision trees under different conditions.

Domaines

Autre [cs.OH]
Fichier principal
Vignette du fichier
active belief decision tree.pdf (670.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01254290 , version 1 (12-01-2016)

Identifiants

Citer

Liyao Ma, Sébastien Destercke, Yong Wang. Online active learning of decision trees with evidential data. Pattern Recognition, 2016, 52, pp.33-45. ⟨10.1016/j.patcog.2015.10.014⟩. ⟨hal-01254290⟩
140 Consultations
1032 Téléchargements

Altmetric

Partager

More