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Abstract

Learning from uncertain data has been drawing increasing attention in recent

years. In this paper, we propose a tree induction approach which can not only

handle uncertain data, but also furthermore reduce epistemic uncertainty by

querying the most valuable uncertain instances within the learning procedure.

We extend classical decision trees to the framework of belief functions to deal

with a variety of uncertainties in the data. In particular, we use entropy intervals

extracted from the evidential likelihood to query selected uncertain querying

training instances when needed, in order to improve the selection of the splitting

attribute. Our experiments show the good performances of proposed active

belief decision trees under different conditions.
Keywords: decision tree, active learning, evidential likelihood, uncertain data,

belief functions

1. Introduction

Decision trees, as one of the best-known approaches for classification, are

widely used due to their good learning capabilities and simplicity to understand.

However, classical decision trees can only handle certain data whose values are

precisely known. Those uncertain instances, despite the fact that they may5
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sebastien.destercke@hds.utc.fr (Sébastien Destercke), yongwang@ustc.edu.cn (Yong
Wang)

Preprint submitted to Pattern Recognition July 21, 2015



contain useful information, are usually ignored or removed by replacing them

with precise instances when building decision trees [1], potentially leading to

a loss of accuracy. Different approaches have been proposed to overcome this

drawback, such as probabilistic decision trees developed by Quinlan [2] and

Smith [3], fuzzy decision trees proposed by Yuan [4] and Wang [5] or uncertain10

decision trees proposed by Biao et al. [6] and Liang et al. [7].

The interest for integrating uncertain data in learning methods has been

growing in the recent years [8, 9, 10, 11]. While probability theory is the most

commonly used tool to model this uncertainty, various authors (see the special

issue [12] and papers within it) have argued that probability cannot always ad-15

equately represent data uncertainty (often termed epistemic uncertainty). For

instance, probabilistic modelling is unable to model faithfully set-valued obser-

vations. In this paper, we will work with a more general theory, the theory of

belief functions (also called Dempster-Shafer theory or evidence theory) [13, 14],

which has the advantage to include both sets and probabilities as specific cases.20

Embedding belief function within the learning of decision trees has already

been investigated in the past. Elouedi et al. [17, 18] discussed belief decision

tree construction under TBM model. Vannoorenberghe [19, 20] concentrated on

the aggregation of belief decision trees. Sutton-Charani et al. [21, 22] proposed

to estimate tree parameters by maximizing evidential likelihood function using25

the E2M algorithm [23].

However, although those proposals deal with uncertain data modelled by

belief functions, none of them have looked at the issue of reducing data uncer-

tainty through information querying. This is what we propose in this paper: to

query uncertain data during the tree learning procedure, in order to improve30

its performances. In some sense, this idea is very close to the one of active

learning [24], where the learning algorithm can achieve higher accuracies by ac-

tively selecting the most valuable unlabelled instances and querying their true

labels. There are however two significant differences between our proposal and

the usual active learning: we consider generic uncertain data (modelled by be-35

lief functions) and we query while learning the model (a process close to online
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active learning [25]), rather than “learning then querying”. To our knowledge,

this paper is the first to propose an evidential online active learning method.

We do this by relying on the notion of evidential likelihood [26] to select the

items to query in order to improve the split selection.40

Apart from the query method mentioned above, our proposal also allows us

to derive an alternative approach to learning decision trees from uncertain data:

considering not only the maximal likelihood value, we extract entropy intervals

from the evidential likelihood and use these intervals to choose the best split at

each decision node. The proposed approach includes more information about45

the likelihood, and extends both classical C4.5 decision trees and the E2M

decision trees [21] applied to uncertain outputs (but certain inputs).

Section 2 recalls the necessary material on belief functions, classical deci-

sion trees and evidential likelihood. In Section 3, we discuss in detail the tree

induction procedure, including entropy interval generation, attribute selection,50

query strategy and the overall algorithm description. Section 4 details some

experiments on classical UCI data sets, and compare the results of the proposed

approach with decision trees without querying. Finally, conclusions are given

in Section 5.

2. Settings and basic definitions55

The purpose of a classification approach is to build a model M that maps

a feature vector x = (x1, . . . , xk) ∈ A1 × A2 × . . . × Ak taking its values on k

attributes, to an output class y ∈ C = {C1, . . . , C`} taking its value among `

classes. Each attribute Ai = {ai1, . . . , airi} has ri possible values. This model is

then used to make predictions on new instances x whose classes are unknown.

Typically this model M (a decision tree, a Bayes network, a logistic regression,

. . . ) is learned from a training set of precise data, denoted as

T =


x1, y1

...

xn, yn

 =


x1

1, · · · , xk1 , y1
...

x1
n, · · · , xkn, yn

 .
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However, in practical applications, it is possible to have uncertainty in both

inputs (feature vectors) and outputs (classification labels). This uncertainty

is epistemic1, in the sense that a given xij or yi has a unique true value that

may be ill-known. As recalled in the introduction, the adequacy of probability

theory to model such uncertainty is questionable, hence in this paper we will60

model uncertainty by belief functions. Also, we will consider the case where

the input is certain and only the output is uncertain (a classical assumption in

active learning).

2.1. Belief functions

Let a finite space C be the frame of discernment containing all the possible

exclusive values that a variable (here, the output class y) can take. When the

true value of y is ill-known, our uncertainty about it can be modelled by a mass

function my : 2C → [0, 1], such that my(∅) = 0 and∑
E⊆C

my(E) = 1. (1)

A subset E of C is called a focal set of my if my(E) > 0. my(E) can then be65

interpreted as the amount of evidence indicating that the true value is in E. The

following typical mass functions show that this model extends both set-valued

and probabilistic uncertainty models:

• a vacuous mass is such that my(C ) = 1. It represents total ignorance;

• a Bayesian mass is such that my(E) > 0 iff |E| = 1. It is equivalent to a70

probability distribution;

• a logical (categorical) mass is such that my(E) = 1 for some E. It is

equivalent to the set E.

1by opposition of so-called aleatory uncertainty, which concerns a stochastic behaviour.
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The associated belief and plausibility functions, which are in one-to-one relations

with the mass function my, are defined as:

Bely(B) =
∑
E⊆B

my(E), (2)

Ply(B) =
∑

E∩B 6=∅

my(E), (3)

for all B ⊆ C . The belief function measures how much event B is certain (it

sums masses implying B), while the plausibility measures how much event B75

is consistent with available evidence. The function ply : C → [0, 1] such that

ply(w) = Ply({w}) is called the contour function associated to my.

When modelling uncertain outputs by mass functions, the training set be-

comes

T =


x1,my1

...

xn,myn

 =


x1

1, · · · , xk1 ,my1

...

x1
n, · · · , xkn,myn

 .

2.2. Decision trees

Decision trees [27] are commonly used classifiers that induce a rooted tree

structure, in which leaves (the terminal nodes) represent class labels and branches80

represent features with associated values leading to the nodes.

To be able to predict to which of ` classes belong an instance with k at-

tributes, decision trees are induced top-down from a training set T . Every de-

cision node (non-terminal node) is associated with a splitting attribute, which

is selected by an attribute selection strategy, that can be based on different85

algorithms and purity measures [28]. The splitting process is then repeated

recursively until a stopping criterion is met. The achieved decision tree then de-

termines a partition of the instance space, and associates a class to each element

of this partition. This means that each terminal node (or leaf) of a decision tree

can be associated to an element of the partition. Figure 1 shows a classical90

decision tree and the associated partition when k = 2 and C = {a, b, c}.

Several algorithms have been proposed for decision tree learning, among

which ID3 [27], C4.5 [29] and CART [30] are the most commonly used. In this
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Figure 1: Example of decision tree and associated partition

paper, we take the basic C4.5 algorithm and entropy as an information measure

to compute and evaluate the quality of a node split by a given attribute. Our95

querying strategy can easily be extended to other algorithms or information

measures, yet as our main goal is to check that our approach improves upon the

ones not considering and not querying uncertain data, we prefer to consider a

well-known and simple induction method.

For the set of possible labels C = {C1, . . . , C`}, we associate to the ` classes

fractions θi with
∑`
i=1 θi = 1, where θi is the estimated probability of class Ci.

Possible parameters θ form a parameter space Θ = {(θ1, . . . , θ`) |
∑`
i=1 θi =

1, 0 ≤ θi ≤ 1, i = 1, . . . , l}. Given a node and the set T of instances belonging

to the partition element associated to this node (in the rest of the paper, we

will simply say ”belonging to this node”), θi in classical decision trees is the

proportion of instances in T that are of class Ci. The formula of entropy is then

Info(T ) = −
∑̀
i=1

θi log2(θi). (4)

Given an attribute Ak having rk modalities, its gain ratio is defined as

Gain ratio(T,Ak) = Gain(T,Ak)
Split Info(T,Ak) , (5)
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where

Gain(T,Ak) = Info(T )− InfoAk(T ) (6)

InfoAk(T ) =
rk∑
i=1

| Ti |
| T |

Info(Ti) (7)

Split Info(T,Ak) = −
rk∑
i=1

| Ti |
| T |

log2
| Ti |
| T |

(8)

with | T | and | Ti | the cardinalities of the instance sets belonging to a parent100

node and to the child node i corresponding to Ak = aki (i.e. instances in the

parent node such that xk = aki ), respectively. In C4.5, Split Info ensures that

attributes having a higher number of modalities will not be favoured unduly

during the splitting selections.

The attribute with the largest gain ratio is then selected for splitting, and105

a new child node is generated for each of its value, dividing the instance space

into several subspaces. Once the tree is induced, a new instance can be classified

by starting at the root node and moving down tree branches according to its

feature values until a leaf node is reached. The predicted label is the class that

is in majority among instances in the leaf. The accuracy of a decision tree can110

then be evaluated on a test set by comparing the predicted class labels with the

true observed labels.

2.3. Evidential likelihood

When the observations are uncertain and modelled by my, it is no longer

possible to evaluate proportions θi through empirical frequencies. One alter-

native [26] is to use the statistical tool of evidential likelihood to perform pa-

rameter estimation. Let Y be a discrete random variable taking value on C

and y be a realization of Y . Given a parametric model pY (·;θ) with parame-

ter vector θ ∈ Θ, the likelihood of θ for a perfect observation y is defined as

L(θ; y) = pY (y;θ), ∀θ ∈ Θ. If y is imprecisely observed (we only know y ∈ B),

the imprecise likelihood of θ is described as

L(θ;B) = pY (B;θ) =
∑
y∈B

pY (y;θ) ∀θ ∈ Θ (9)
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Furthermore, when the observation my is both imprecise and uncertain, the

evidential likelihood can be defined as [31]

L(θ;my) =
∑
B⊆C

L(θ;B)my(B)

=
∑
ω∈C

pY (ω;θ)
∑
B3ω

my(B)

=
∑
ω∈C

pY (ω;θ)ply(ω) ∀θ ∈ Θ (10)

As L(θ;my) only depends on the contour function ply induced by my, it can be

written as L(θ; ply) instead. From (10), we have L(θ; ply) = Eθ[ply(Y )].115

If we observe a set of cognitively independent (see Denoeux [31] for a defini-

tion of cognitively independent) and i.i.d. uncertain observations y = (y1, . . . , yn),

where every observation yi is modelled by myi , the evidential likelihood of the

corresponding multinomial distribution (having θj as parameters) becomes

L(θ;my) = Eθ[ply(Y )] =
n∏
i=1

Eθ[pli(Y )] =
n∏
i=1

∑̀
j=1

θjpli(j), (11)

where we denote pli(j) := plyi(Cj) for brevity’s sake. The corresponding contour

function (an extension of the so-called relative likelihood [32]) is given by

plΘ(θ;my) = L(θ;my)
supθ∈Θ L(θ;my) (12)

3. Induction of active belief decision trees

Up to now, there have been various proposals to deal with evidential data

and decision tree induction (see Introduction), yet all of them take data uncer-

tainty as a given and do not try to reduce it. Yet, attempting to reduce data

uncertainty (especially as it is epistemic) can improve the model accuracy, as120

witnessed by some recent works focusing on fuzzy data [10] (which can be seen

as a special case of belief functions). Our goal here is to propose a method to

perform data querying (asking the true labels of uncertain data) while learning,

using at our advantage the properties of the evidential likelihood induced by

the contour function. We also do so only when we need, trying to select those125
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data that will be the most helpful to select a good split. To our knowledge, this

is the first proposal within evidence theory that goes in this sense. A closely

related recent proposal is the one of Reineking and Schill [33], yet it uses the

notion of Pignistic transform and is not applied to trees.

This section explains the proposed method, which is based on calculating130

entropy intervals from the evidential likelihood, and on querying data when

these intervals are insufficient to chose the best attribute to split on.

3.1. Generation of entropy intervals

To generate the entropy intervals from data my that are within a node, we

will estimate θ by using the evidential likelihood induced from the multinomial135

distribution (Equation (12)). These estimations will then be mapped to entropy

intervals.

Definition 1 (α-cut of Θ). Let Θ = {(θ1, . . . , θ`) |
∑`
i=1 θi = 1, 0 ≤ θi ≤ 1, i =

1, . . . , l} be the parameter set with a contour function pl : Θ → [0, 1]. Given a

real number α ∈ [0, 1], the α-cut of Θ is denoted as

Lα := {θ ∈ Θ | plΘ(θ;my) ≥ α} (13)

The contour function plΘ shown in formula (12) is a concave function (this

is proved in Appendix A). Therefore the α-cut Lα is always a convex set of Θ,

which means that all possible entropies within Lα form a closed interval over140

the real numbers R, as seen in Definition 2.

Definition 2 (entropy interval). For an α-cut of Θ, the entropy interval which

contains all the possibly-taken entropy values is denoted by

Sα := {Ent(θ) | θ ∈ Lα} = [Entα, Entα], (14)

with respectively

Entα = inf
θ∈Lα

Ent(θ), Entα = sup
θ∈Lα

Ent(θ)

the lower and upper bounds of entropy Ent(θ) = −
∑`
i=1 θi log2(θi).
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The passage from the evidential likelihood to entropy intervals is illustrated

in Figure 2.

pl

θ[ ]Lα

α

(a) illustration of α-cut of Θ

θ̂
Lα

Θ Ent(θ)

R[ ]
Sα

(b) mapping from space Θ to entropy interval Sα
in R

Figure 2: Mapping relation of contour function plΘ, α-cut Lα and entropy interval Sα

Definition 3. The width of an entropy interval Sα is given by

w(Sα) := Entα − Entα (15)

For a parameter set Θ = {(θ1, . . . , θ`) |
∑`
i=1 θi = 1, 0 ≤ θi ≤ 1, i = 1, . . . , `}, we145

have w(Sα) ∈ [0,max(Ent)], where max(Ent) = −log2( 1
` ) = log2(`). Note that

w(Sα) is a decreasing function of α, i.e., it is minimal for α = 1 and maximal

for α = 0. In particular, if α = 1, the interval S1(T ) will be a unique value,

unless all instances in T are missing or imprecise.

Thanks to these tools, we are now able to calculate entropy values for every150

decision node of the tree, even when having uncertain observations of the classes.

The estimation is now an interval rather than a crisp value, the width w(Sα) of

this interval measuring our uncertainty about the information measure of the

node.

3.2. Attribute selection and splitting strategy155

As in C4.5 decision trees, we propose to use information gain ratio to se-

lect the best split. However, this value now becomes interval-valued, as each

node is associated with an entropy interval Sα. Given an attribute Ak with rk

10



modalities, the information gain ratio (7) becomes

IGα(Ak) = Gain(T,Ak)
Split Info(T,Ak)

= [
Entα(T )−

∑rk
i=1

|Ti|
|T | Entα(Ti)

Split Info(T,Ak) ,
Entα(T )−

∑rk
i=1

|Ti|
|T | Entα(Ti)

Split Info(T,Ak) ]

:= [IGα(Ak), IGα(Ak)] (16)

with

Gain(T,Ak) = Sα(T )− SA
k

α (T ) (17)

SA
k

α (T ) =
rk∑
i=1

| Ti |
| T |

Sα(Ti) (18)

Split Info(T,Ak) = −
rk∑
i=1

| Ti |
| T |

log2
| Ti |
| T |

(19)

where T and Ti remain the instance set within a parent node and child node

corresponding to Ak = aki . Note that their cardinalities are precise (as is

Split Info(T,Ak)), because input values are assumed to be certain. Sα(T )

is the entropy interval computed from the instance set T .

Normally, we would select the attribute with largest information gain ratio,160

yet since they are now intervals, such an attribute is not necessarily uniquely

defined. To compare the gain ratio intervals of candidate attributes, we give the

definition of attribute dominance.

Definition 4 (attribute dominance). Given two attributes Ai, Aj and their

associated gain ratio intervals IGα(Ai), IGα(Aj), we say that attribute Aj165

dominates Ai (which we denote by Aj �I Ai) if IGα(Aj) > IGα(Ai).

It is obvious that the dominance relation is transitive, i.e., if Aj �I Ai

and Ai �I Ah, then Aj �I Ah. For a set of attributes A1, . . . , Ak, when Aj

dominates all the other attributes, i.e., ∃Aj s.t. Aj �I Ai,∀Ai 6= Aj , i, j =

1, . . . , k, it will have the largest gain ratio undoubtedly, and we will call it the170

dominant attribute.

Given a decision node with an attribute set of k candidates A = {A1, ..., Ak},

if there is no dominant attribute, we have two options: trying to reduce the in-
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tervals width of non-dominated attributes, to be able to compare them according

to Definition 4, or try to propose some attribute selection relying on the entropy175

intervals. We therefore propose the following attribute selection strategy:

• If a dominant attribute Aj exists, it is selected for splitting;

• if

A q = {Ai ∈ A : @Aj s.t. Aj �I Ai},

the set of non-dominated attribute according to our knowledge, has more

than one element (|A q| > 1), then

– if we can query some uncertain elements, then query (see Section 3.3)180

to refine A q, until |A q| = 1 (there is a dominant attribute) or we can

no longer query (no uncertain instances are available, query request

refused manually, maximal number of queries reached, etc.).

– if we cannot query but still have multiple non-dominated elements

(|A q| > 1), select the attribute with maximum mid-value of interval:

arg
Aj∈A q

max
j

IGα(Aj) + IGα(Aj)
2 . (20)

Example 1. For instance, if we have three attributes A1, A2, A3 on which we

can split, and given the chosen α, we have

IGα(A1) = [0.7, 1.2], IGα(A2) = [0.5, 1.3], IGα(A3) = [0.3, 4]

then we can certainly eliminateA3 from the possible splits (IGα(A3) < IGα(A2)),

but not A1 or A2, since neither dominates the other. We therefore have A q =185

{A1, A2}, and either we can query to reduce the intervals IGα(A1), IGα(A2),

or if we cannot query we pick A1 (since its middle point, 0.95, is higher than

the one for A2).

Having selected the best attribute Aj with rj possible values, the decision

node is split into rj child nodes, while the instance set T is partitioned into rj190

mutually exclusive subsets T1, ..., Trj according to values that attribute Aj takes.
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Algorithm 1 summarizes the process of attribute selection. This algorithm is

used iteratively to split instance space A1 × . . . × Ak into more informative

subspaces until a stopping criterion (minimal number of instances in a node

reached, maximal tree depth reached, . . . ) is met.

Algorithm 1: Algorithm of attribute selection and splitting
Input: set of possible splitting attributes A = {A1, ..., Ak}, instance set

T , maximal number of queries Nq, number of queries numq

Output: selected attribute Aj , instance sets for all child nodes Ti,

i = 1, . . . , rj , number of queries numq

1 compute gain ratio interval [IGα(Ai), IGα(Ai)] for each Ai;

2 update A into A q = {Ai ∈ A : @Aj s.t. Aj �I Ai};

3 if |A q| > 1 then

4 if numq < Nq then

5 query with Algorithm 2 and go to step 1

6 else

7 split on attribute arg
Aj∈A q

max
j

IGα(Aj)+IGα(Aj)
2 .

8 else

9 split on A q

195

Example 2. Consider a training set with 21 training instances. Every instance

has two attributes AX (taking value in {a, b, c}) and AY (taking value in {d, e})

and is classified as one of three classes C = {E,@,�}. Representing the uncer-

tain labels under belief function framework, the features, plausibility functions

and true label of every instance are listed in Table 1.200

There are two candidate attributes AX and AY initially. When α=1, we

get the precise gain ratios IG1(AX) = 0.7631 and IG1(AY ) = 0.6933, therefore

attribute AX would be selected as the best choice. If we now set α = 0.9, the

13



Table 1: Uncertain instances modelled by belief functions

Number
Attributes Plausibility functions True

X Y pl(E) pl(@) pl(�) label

1 a e 0.8 0.3 0.3 �

2 a e 0.2 1 0.7 @

3 a e 0.1 0.1 1 �

4 a e 0.3 0 1 �

5 b e 0.7 1 0.7 @

6 b e 0.5 1 0 @

7 b e 0.7 1 0.3 @

8 b e 1 1 1 @

9 c e 0 1 0 @

10 c e 0 1 0 @

11 c e 0 1 0 @

12 c e 0.4 1 0 @

13 a d 0.2 0.2 1 �

14 a d 0 0 1 �

15 a d 0.3 0 1 �

16 a d 0 0 1 �

17 b d 0.6 0.6 1 �

18 c d 1 0 0 E

19 c d 1 0.2 0 E

20 c d 0.5 0.8 0.4 @

21 c d 0.7 0.3 0 E

split on attribute AX give the values

S0.9(T ) = [1.4522, 1.5751]

SA
X

0.9 (T ) = 8/21[0.0000, 0.1614] + 5/21[0.0000, 0.4822] + 8/21[0.7950, 1.0319]

= [0.3029, 0.5694]

IG0.9(AX) = [0.8828, 1.2722]/1.5538 = [0.5682, 0.8188].

14



The split on attribute AY give the values

S0.9(T ) = [1.4522, 1.5751]

SA
Y

0.9 (T ) = 12/21[0.6098, 0.9285] + 9/21[0.9580, 1.1211] = [0.7591, 1.0110]

IG0.9(AY ) = [0.4412, 0.8161]/0.9852 = [0.4478, 0.8282].

Table 2 lists more results about the entropy and gain ratio intervals calcu-

lated with different α. As the intervals show, in all the three cases, no matter

what value α takes, no dominant attribute exists. So we query at most 5 in-

stances (according to process detailed in Section 3.3) to refine the results. The

information gain ratios calculated after querying are denoted as IGqα(T,Ai).205

After querying, it can be seen that AX dominates AY when α=0.9, therefore

AX can safely be selected for splitting. In the other two cases, we do not have

AX �I AY , yet according to Equation (20), AX is also selected.

The intervals typically become narrower after querying. Yet for lower values

of α (such as α = 0.5 in Table 2), querying has less effect on the narrowing of210

information gain intervals, which suggests that α value should not be too low

during the learning process.

It can also happen that no dominant attribute is found even when all uncer-

tain instances have been queried. For example, the results achieved by querying

all uncertain instances are IG0.8(T,AX) = [0.2540, 0.6044], IG0.8(T,AY ) =215

[0.1715, 0.6226]. In this case, we can use Equation (20) to select the best split.

Note also that if intervals overlaps even when all instances have been queried,

this gives us a natural stopping criterion (however, to use it, α should remain

high).

3.3. Query strategy220

As mentioned in the previous section, query is requested only when no domi-

nant attribute exists. Each time a query is done, the selected uncertain instances

are presented to an oracle (e.g., a human expert annotator, a reliable sensor)

that provides the true label of the instance without uncertainty. This will tend

to narrow entropy intervals and identify a dominant attribute. By querying, we225
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Table 2: Intervals achieved under different values of α

α=0.5 α=0.8 α=0.9

Sα(T ) [1.2765, 1.5848] [1.4033 , 1.5831] [1.4522 , 1.5751]

Sα(T (AX = a)) [0.0000 , 0.7051] [0.0000 , 0.2864] [0.0000 , 0.1614]

Sα(T (AX = b)) [0.0000 , 1.4637] [0.0000 , 0.8335] [0.0000 , 0.4822]

Sα(T (AX = c)) [0.5294 , 1.3020] [0.7219 , 1.1025] [0.7950, 1.0319]

Sα(T (AY = e)) [0.3659 , 1.3121] [0.5294 , 1.0450] [0.6098 , 0.9285]

Sα(T (AY = d)) [0.8113 , 1.4274] [0.9248 , 1.2023] [0.9580 , 1.1211]

IGα(T,AX) [0.1052 , 0.8902] [0.4349 ,0.8419] [0.5682 , 0.8188]

IGα(T,AY ) [-0.0863, 1.0434] [0.2953 , 0.8975] [0.4478 , 0.8282]

IGqα(T,AX) [ 0.1299 , 0.8948] [0.4155 , 0.8006] [ 0.5379 , 0.7689]

IGqα(T,AY ) [-0.2404 , 0.7549] [-0.0088 , 0.5622] [ 0.0935 , 0.4651]

aim to better recognize which attribute is the best to split on when there is too

much uncertainty, with the goal to improve the overall accuracy of the model.

The query procedure mainly consists of two parts: ordering uncertain in-

stances and asking for precise labels of those selected. Instances at a node are

ordered by their impacts on the width of entropy interval. The one that influ-

ences the uncertain entropy interval most will be chosen for query. Denoting

the instance set at a node as T , the optimal instance to be queried is selected

as

Iα∗ = arg max
i

w(Sα(T ))− w(Sα(T\ < xi,myi >)) + 1myi=vac (21)

where T\ < xi,myi > represents the instance set obtained by removing instance

< xi,myi > from T , and 1myi=vac is the indicator function which has value 1

only when instance < xi,myi > is vacuous.230

The intuition behind Equation (21) is that if < xi,myi > is vacuous, then

w(Sα(T )) = w(Sα(T\ < xi,myi >). To make sure that vacuous instances

(whose querying have an important impact on the entropy interval) are queried

often enough, we add 1 to (21) in their case. If < xi,myi > is almost cer-

tain then most often we will have w(Sα(T )) < w(Sα(T\ < xi,myi >)), with235
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the difference being bigger as < xi,myi > is more certain. The cases where

w(Sα(T )) > w(Sα(T\ < xi,myi >) concern those instances < xi,myi > that

are contradictory with the majority class, i.e., whose most plausible class is

different from this latter.

In real applications, when the instance set T is of large scale, the impact240

of an instance on the entropy interval will become relatively small and there

may be several instances having the same maximal value of (21). Therefore, to

order query candidates, uncertainty of every instance is also considered. When

optimal instances Iα∗1 , . . . , Iα∗s have the same influence on w(Sα(T )), the one

with larger uncertainty is more preferred, i.e., Iα∗p � Iα∗q if
∑
j plp(Cj) >245 ∑

j plq(Cj), p, q ∈ {1, . . . , s}.

Example 3. Consider the instances in Example 2, arranging the uncertain in-

stances in node AX = a, we achieve the query order shown in Table 3.

Table 3: Query order of node AX = a

number w(S0.9(T ))− w(S0.9(T\ < xi,m
Y
i >))

∑
j pli(Cj)

1 0.0806 1.4000

2 -0.0001 1.9000

4 -0.0001 1.3000

15 -0.0001 1.3000

13 -0.0330 1.4000

3 -0.0330 1.2000

From Table 1 we know that instance 1 is mislabelled and instance 2 is the

most uncertain one. Our proposed query strategy does find out the most valu-250

able instances.

Once query is requested at a decision node because we cannot decide what

is the best split, we select n instances (usually n = 1) at every child node and

label all those selected in one operation. Query is stopped when the number of

queries reaches a fixed preset limit Nq. Denote Thj = T (Aj = ajh), h = 1, . . . , rj255

the instance set within the child node corresponding to Aj = ajh, the query
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strategy is summarized in Algorithm 2.

Algorithm 2: Algorithm of query strategy
Input: attributes list A q = {A1, ..., Ak}, instance set T , query limit Nq,

number of queries numq

Output: updated instance set T , number of queries numq

1 Tq=findUncertain(T );

2 if |Tq|=0 then

3 Return

4 for all Aj ∈ A q and ajh ∈ Aj do

5 Iα∗
Th
j

= arg maxxi∈Thj [w(Sα(Thj ))− w(Sα(Thj \ < xi,myi >));

6 if numq < Nq then

7 Return

8 query the selected instance Iα∗
Th
j

;

9 numq = numq + 1;

10 update T ;

It can be noted that parameter α in the definition of α-cut can also control

the number of queries to be made. As illustrated in Figure 3(a), as the value

of α decreases, the α-cut Lα becomes larger, making the corresponding entropy260

interval Sα wider or remaining the same. This can also be seen in the distri-

bution shown in Figure 3(b) that a narrower entropy interval is achieved by a

larger α, hence those intervals will often dominate each others, decreasing the

number of queries needed to make a decision. Looking back to Example 2, en-

tropy intervals achieved in the first splitting step under different α are shown in265

Table 2. As the value of α decreases, intervals become wider, making attribute

selection more difficult.

Remark 1. When α equals to 1, the entropy interval degenerates to an exact

entropy value computed by the optimal parameter θ̂. This means that when all

instances are precise and α = 1, we retrieve the classical C4.5 method. α = 0270
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Figure 3: Relations among α, α-cut Lα and entropy interval Sα

leads to a vacuous interval [0, log2(`)], whatever the number of instances is. This

last behaviour is similar to what happens in imprecise probabilities when trying

to learn from a completely vacuous prior [34, Sec 7.3.7]

3.4. Stopping criterion

After selecting the best splitting attribute, we split the decision node and at-275

tach the obtained structure to this node. This procedure is repeated recursively

until meeting one of the following stopping criterion:

• No attribute available for selection;

• | T | falls below a threshold;

• the estimated parameter θ̂ for α = 1 is unique and one component of it280

reaches 1;

• The upper bounds of information gain ratio intervals are all lower than

zero.

When the stopping criterion is satisfied, the current node becomes a leaf node

whose optimal parameter θ̂ is the one maximizing the evidential likelihood (θ̂285

can be computed by using E2M algorithm [23] or other convex optimization

methods, as the contour function in this application has been proven to be

concave). The leaf node is then labelled as the class corresponding to maximum

component of θ̂, i.e., labelled as Ĉξ = arg
Ci∈C

max
i
θ̂i, where θ̂ = arg max

θ
L(θ;my).
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The pseudo code of complete tree induction procedure is summarized in290

Algorithm 3. Once an active belief decision tree is built, the classification of

a new instance can be realized by starting at the root node and going down

according to its feature values until a leaf node is reached.

Algorithm 3: Induction of active belief decision trees (ABC4.5)
Input: uncertain training set Tpl
Output: final tree Tree

1 Create a root node containing all the instances in Tpl;

2 if stopping criterion is met then

3 Ĉξ = arg
Ci∈C

max
i
θ̂i;

4 return Tree={root node};

5 else

6 apply Algorithm 1 to select the splitting attribute Abest;

7 T vpl= induced subsets from Tpl based on Abest;

8 for all T vpl do

9 Treev = ABC4.5(T vpl);

10 Attach Treev to the corresponding branch of Tree;

Remark 2. The classical decision tree works as a special case of active belief

decision tree where all instances are precise (all mass functions are both Bayesian295

and logical), α = 1, and no query is carried out. The decision trees learned with

evidential EM approach [21] (when only the output classes are uncertain) can

also be retrieved from the proposed approach by setting α=1.

Example 4. We build the active belief decision tree for the 21 instances in

Example 1 completely, meaning that we now check for each node AX = a,300

AX = b and AX = c whether they can be split further. With parameters

θ̂AX=a = (0, 0, 1), θ̂AX=b = (0, 1, 0) and θ̂AX=c = (0.3300, 0.6700, 0), nodes

AX = a, AX = b become leaves, and AX = c is split into two leaf nodes since

IGα(AY ) = [0.5711, 1.0319] is positive. Figure 4 demonstrates the decision tree
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learned from uncertain training data.

AX

y=�

AX = a

y=@

AX = b

AY

y=@

AY = d

y=E

AY = e

AX = c

Figure 4: Active belief decision tree built for the illustrative example
305

4. Experiments on UCI data sets

In this section, we present experiments on various data sets and compare the

classification performances of proposed active belief decision trees with respect

to classical decision trees, E2M decision trees and proposed belief decision trees

without querying (using only (20) to select the best attribute). Since no uncer-310

tain data benchmark is available, we take data sets from the UCI repository [35]

and introduce data uncertainty into them. 10-fold cross-validations on six UCI

data sets are performed to validate our methodology. Details of these data sets

are provided in Table 4.

Table 4: UCI data sets for validation

Data set num of attributes num of classes num of instances

Breast tissue 9 6 106

Iris 4 3 150

Wine 13 3 178

Glass 9 7 214

Ecoli 8 7 336

Balance scale 4 3 625
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Prior to tree induction, continuous attribute values are discretized by the

method of equal width interval binning. Given an instance set

T =


x1

1, · · · , xk1 , y1
...

x1
n, · · · , xkn, yn

 or T =


x1

1, · · · , xk1 ,my1

...

x1
n, · · · , xkn,myn

 ,

the range [xi, xi] of each continuous-valued attribute xi = (xi1, · · · , xin)T is315

independently divided into four intervals of equal width by computing δ = xi−xi
4

and setting thresholds at xi + iδ, i = 1, 2, 3.

Given an uncertain observation myi , denote C∗i its true label. Thanks to

the flexibility of belief functions, a high number of situations can be simulated

from precise data:320

• a precise observation is such that plyi(C∗i ) = 1, and plyi(Cj) = 0,∀Cj 6=

C∗i

• a vacuous observation is such that plyi(Cj) = 1, ∀Cj ∈ C

• an imprecise observation is such that plyi(Cj) = 1 if Cj = C∗i or Cj ∈ Crm,

and plyi(Cj) = 0, Cj ∈ C \ {C∗i , Crm}, where Crm is a set of randomly325

selected labels

• an uncertain observation is such that plyi(C∗i ) = 1, and plyi(Cj) = rj ,∀Cj 6=

C∗i , where rj are sampled independently from uniform distribution U([0, 1])

• a noisy observation is such that plyi(C̃) = 1, and plyi(Cj) = 0,∀Cj 6= C̃,

where the true label is replaced by a label C̃ uniformly drawn from C330

Since data generations are stochastic, all experiments are repeated five times

to calculate the average result. In the following subsections, we set Nq = n/4

(a discussion of Nq can be seen in Section 4.3) and compare the performances

of four trees:

• Tree 1 (classical C4.5), which only uses precise data in the training set335

during tree induction;
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• Tree 2 (E2M tree - α = 1, without querying), which can deal with various

kinds of uncertain data;

• Tree 3 (ABC4.5 - α = 0.8, without querying), which takes both uncertain

data and uncertain entropy into account;340

• Tree 4 (ABC4.5 - α = 0.8, with querying), which combines uncertain

data, uncertain entropy and active learning to induce trees.

4.1. Experiments with vacuous data

Some instances in the training set are set to be totally vacuous (unobserved)

while others remain precise. Vacuousness level V ∈ [0, 1] controls the chance345

of an observation to become vacuous. For every observation, a number Vi is

randomly generated on [0,1] and it will be replaced with a vacuous one if Vi < V .

Algorithm 4: algorithm to generate vacuous observations from UCI data

sets
Input: UCI data set T = (x, y), vacuousness level V

Output: training set Tpl = (x, pl)

1 x← discreteAttribute(x);

2 for 1 ≤ i ≤ n do

3 Vi ← randomGenerate(U([0, 1]));

4 if Vi < V then

5 plyi(Cj) = 1, ∀Cj ∈ C ;

6 else

7 plyi(C∗i ) = 1, plyi(Cj) = 0,∀Cj 6= C∗i ;

Given training sets generated by Algorithm 4, Figure 5 shows the classifi-

cation accuracies changing with V . Accuracies of all the trees decrease as V350

increase, yet as V approaches 1, the curves show an obvious drop of accuracy

except the one of active belief decision trees. Actually, with querying, we can
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Figure 5: Experimental results with controlled vacuousness

get a satisfactory accuracy even if V reaches 1. On the other hand, when vac-

uousness is relatively low, our proposed approach can also guarantee similar

performances as classical C4.5 trees, which makes active belief decision trees355
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suitable for all situations.

It can also be observed that active belief decision trees become more effective

when data sets are complex: for simple data sets such as Iris data, normal

methods only get bad results for a quite high degree of vacuousness (V > 0.6),

while by querying vacuous instances, complex data sets see a clear accuracy360

improvement even when V is around 0.2, as seen in results of Ecoli data set.

4.2. Experiments with imprecise data

In this part, we consider the situation in which some data are imprecisely

observed as set-valued, but the true value lies in the observed set (such ob-

servations are sometimes referenced as superset labels [36]). Imprecision level365

I ∈ [0, 1] controls the percentage of imprecise observations. All instances in the

training set are set initially to be precise. For every observation, a number Ii
is uniformly generated on [0,1]. The observation is replaced with an imprecise

one if Ii < I, otherwise, it remains precise.

To make an observation imprecise, generate a random number Li ranging in370

[0,1] for every class label Ci (except the true label). Those labels with Li < I

will have a plausibility equal to one. Note that I = 1 leads to a totally imprecise

data set. Algorithm 5 summarizes the generation procedure.

As seen in Figure 6, active belief decision trees still have a quite stable per-

formance with changing I. Accuracies of all four trees on all data sets decrease375

as imprecision increases. ABC4.5 reaches nearly the same performances as the

other three trees in low-imprecision cases, and outperforms them when data are

of high imprecision. The performances are quite similar as the results in previous

subsection, yet as I grows, the proposed method may have a relatively smaller

advantage over other methods than in experiments with controlled vacuous-380

ness. This can be partially explained by the fact that imprecise but non-totally

vacuous instances brings less uncertainty to the data sets.

4.3. Experiments with noisy and uncertain data

To evaluate the performance of proposed approach in a more general situ-

ation, now we build plausibility distributions for every uncertain observation,385
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Algorithm 5: algorithm to generate imprecise observations from UCI data

sets
Input: UCI data set T = (x, y), imprecision level I

Output: training set Tpl = (x, pl)

1 x← discreteAttribute(x);

2 for 1 ≤ i ≤ n do

3 plyi(C∗i ) = 1, plyi(Cj) = 0,∀Cj 6= C∗i ;

4 Ii ← randomGenerate(U([0, 1]));

5 if Ii < I then

6 Crm ← randomGenerate(C \ {C∗i });

7 plyi(Crm) = 1;

where the true label has a higher chance (but not necessarily) to have the highest

plausibility.

Following procedure similar to those used previously, N ∈ [0, 1] decides

whether we noise an observation by replacing its true label with another label

uniformly drawn from C. Uncertainty level U ∈ [0, 1] determines the chance of390

an observation to be uncertain. As depicted in Algorithm 6, we generate a ran-

dom number Ui ∈ [0, 1] for each observation and set those having Ui < U to be

uncertain observations. The plausibility distribution for every uncertain obser-

vation is achieved by giving each label of that observation a random plausibility

value ranging in [0, U ].395

Fixing N = 0.2, the average classification accuracies changing with U are

reported in Figure 7. Unlike classical C4.5 trees, the three trees based on evi-

dential likelihood are pretty robust to data uncertainty. Thanks to the usage of

evidential data and entropy intervals, they may even have a slight improvement

of classification accuracies as U approaches 1. The reason for this behaviour400

is simple: when U = 0, the noisy data are all certain, hence their presence

degrades in the same way the original C4.5 and the belief decision trees; when

U increases, some of these noisy data (as well as non-noisy data) become un-
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Figure 6: Experimental results with controlled imprecision

certain. When not allowing for querying, these uncertain noisy data will have a

lower impact on the learning procedure, making it more robust. When allowing405

for querying, then some of these noisy information will be corrected into reli-
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Algorithm 6: algorithm to generate noisy and uncertain observations
Input: UCI data set T = (x, y), noise level N , uncertainty level U

Output: training set Tpl = (x, pl)

1 x← discreteAttribute(x);

2 for 1 ≤ i ≤ n do

3 Ni ← randomGenerate(U([0, 1]));

4 if Ni < N then

5 C∗i ← randomGenerate(C );

6 plyi(C∗i ) = 1, plyi(Cj) = 0,∀Cj 6= C∗i ;

7 Ui ← randomGenerate(U([0, 1]));

8 if Ui < U then

9 plyi(Cj)← randomGenerate(U([0, U ])), ∀Cj 6= C∗i ;

able precise information, therefore improving the quality of the induced model.

This explains that allowing for uncertainty (or even injecting some) can actually

improve the quality of the learned model when the training set contains some

wrongly labelled instances.410

With querying, the active belief decision trees can still result in the highest

accuracy, but comparing to those without querying, the improvement will be

relatively small. This can easily be explained by the fact that the true label

remains the most plausible one, hence evidential likelihood methods performs

quite well.415

Similarly, Figure 8 reveals the classification behaviors with fixed U = 0.5

and changing N . From experimental results, it is obvious that active belief

decision trees competes quite well for all the data sets. Also, the more noised

the instances are, the greater the improvement can be.

4.4. Further experiments420

We can also look at the impacts of other control variables. For example,

Figure 9 shows how accuracy involve when we set U = 0.8 and N = 0.5 (high
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Figure 7: Experimental results with controlled uncertainty

uncertainty and noise) and increase the number of queried items. As expected,

we can see a steady increase in the accuracy with the number of queried items,

with the trend slowing down as more data are queried. Most of the time, 60425
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(c) Wine data
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(e) Ecoli data
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Figure 8: Experimental results with controlled noise

queries or less are sufficient to reach an accuracy close to the maximum (with

the exception of the balance scale data set).

This indicates that querying data is worthy for different values of Nq (the
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Figure 9: Experimental results with changing number of queries

number of queried items), even small ones, but that the more we can query, the

better the model becomes.430
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5. Conclusion

Although much work has been done on learning trees from evidential data,

they only focus on dealing with uncertainty rather than reducing this uncer-

tainty through querying (active learning) to learn better models. In this paper,

based on the generic model of belief functions, we have proposed an active be-435

lief decision tree learning approach which can improve classification accuracy

by querying while learning. To deal with uncertain data, entropy intervals are

extracted from the evidential likelihood to calculate gain ratio and select the

best attribute. Meanwhile, to reduce uncertainty, we query the most valuable

uncertain instances to help in the selection of the best attribute.440

As the experimental results show, the proposed approach is robust to differ-

ent kinds of uncertainties. Its performances are comparable to classical decision

trees when data are precise, and can maintain those good performances even in

extreme situations such as when data are very imprecise or noisy. Therefore,

the active belief decision tree have a potentially broad field of application. Some445

improvements and related topics will be investigated in our future research, such

as:

• To reduce the computational complexity to make it more efficient in large-

scale data classification. Indeed, although the fact that the multinomial

contour function is concave (Appendix Appendix A) allows for faster com-450

putations and reasonable query time for small data sets, it may become a

problem for larger ones;

• To consider the uncertainty in both feature vectors and class labels, to

achieve both feature and output querying. This would however require

the development of efficient numerical estimations, as the contour function455

would then be non-concave;

• To study the pruning approach to reduce the size of decision tree and

reduce over-fitting;
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• To investigate different possible selection strategies for the instances to

query, for instance taking inspiration from active learning criteria (e.g.,460

expected model change).
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Appendix A. Concavity of multinomial evidential likelihood

Contour function plΘ(θ;my) is a concave function.

plΘ(θ;my) = Eθ[ply(Y )]
supθ∈Θ Eθ[ply(Y )] =

∏n
i=1

∑`
j=1 θjpli(j)

supθ∈Θ
∏n
i=1

∑`
j=1 θjpli(j)

Proof. (i) The domain of function plΘ

Θ = {θ|θi ∈ [0, 1],
∑
i

θi = 1, i = 1, ..., `}

is a unit simplex, hence a convex set.

(ii) Given observations y, take two vectors θ and θ′ from Θ, define

g(θ) = log(L(θ;my)) =
n∑
i=1

log
∑̀
j=1

θjpli(j).

For any λ ∈ [0, 1], we have

g(λθ + (1− λ)θ′) =
n∑
i=1

log
∑̀
j=1

(λθj + (1− λ)θ′j)pli(j)

and

λg(θ) + (1− λ)g(θ′)

=
n∑
i=1

[λ log
∑̀
j=1

θjpli(j) + (1− λ) log
∑̀
j=1

θ′jpli(j)]

=
n∑
i=1

log[(
∑̀
j=1

θjpli(j))λ · (
∑̀
j=1

θ′jpli(j))1−λ].

Then,

g(λθ + (1− λ)θ′)− [λg(θ) + (1− λ)g(θ′)]

=
n∑
i=1

log
∑`
j=1 [λθj + (1− λ)θ′j ]pli(j)

[
∑`
j=1 θjpli(j)]λ · [

∑`
j=1 θ

′
jpli(j)]1−λ

=
n∑
i=1

log
λ

∑l
j=1 θjpli(j) + (1− λ)[

∑`
j=1 θ

′
jpli(j)]

[
∑`
j=1 θjpli(j)]λ · [

∑`
j=1 θ

′
jpli(j)]1−λ
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According to the weighted arithmetic mean and weighted geometric mean in-

equality, for any y1, y2, λ ≥ 0, λy1 + (1− λ)y2 ≥ yλ1 · y1−λ
2 , therefore

g(λθ + (1− λ)θ′)− [λg(θ) + (1− λ)g(θ′)] ≥ 0

g(θ) is a concave function. Since exponential function is convex and increasing,565

the composition eg(θ) remains concave. Normalization will not change concavity

as well, hence plΘ is a concave function.
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