Ihara's lemma and level rising in higher dimension - Archive ouverte HAL
Article Dans Une Revue Journal de l' Institut de Mathématiques de Jussieu Année : 2022

Ihara's lemma and level rising in higher dimension

Résumé

A key ingredient in the Taylor-Wiles proof of Fermat last theorem is the classical Ihara's lemma which is used to rise the modularity property between some congruent galoisian representations. In their work on Sato-Tate, Clozel-Harris-Taylor proposed a generalization of the Ihara's lemma in higher dimension for some similitude groups. The main aim of this paper is then to prove some new instances of this generalized Ihara's lemma by considering some particular non pseudo Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level rising statement.
Fichier principal
Vignette du fichier
ihara.pdf (468.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01222967 , version 1 (02-11-2015)
hal-01222967 , version 2 (10-12-2018)
hal-01222967 , version 3 (19-05-2019)

Identifiants

  • HAL Id : hal-01222967 , version 3

Citer

Pascal Boyer. Ihara's lemma and level rising in higher dimension. Journal de l' Institut de Mathématiques de Jussieu, 2022, 21 (5). ⟨hal-01222967v3⟩

Relations

126 Consultations
114 Téléchargements

Partager

More