Automatic Design of Vision-Based Obstacle Avoidance Controllers Using Genetic Programming - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Automatic Design of Vision-Based Obstacle Avoidance Controllers Using Genetic Programming

Renaud Barate
  • Fonction : Auteur correspondant
  • PersonId : 972437

Connectez-vous pour contacter l'auteur
Antoine Manzanera

Résumé

The work presented in this paper is part of the development of a robotic system able to learn context dependent visual clues to navigate in its environment. We focus on the obstacle avoidance problem as it is a necessary function for a mobile robot. As a first step, we use an off-line procedure to automatically design algorithms adapted to the visual context. This procedure is based on genetic programming and the candidate algorithms are evaluated in a simulation environment. The evolutionary process selects meaningful visual primitives in the given context and an adapted strategy to use them. The results show the emergence of several different behaviors outperforming hand-designed controllers.
Fichier principal
Vignette du fichier
ea07.pdf (552.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01222652 , version 1 (30-10-2015)

Identifiants

Citer

Renaud Barate, Antoine Manzanera. Automatic Design of Vision-Based Obstacle Avoidance Controllers Using Genetic Programming. 8th International Conference on Artificial Evolution (EA'07), Oct 2007, Tours, France. ⟨10.1007/978-3-540-79305-2_3⟩. ⟨hal-01222652⟩

Collections

ENSTA ENSTA_U2IS
25 Consultations
83 Téléchargements

Altmetric

Partager

More