Bicovariograms and Euler characteristic of random fields excursions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Bicovariograms and Euler characteristic of random fields excursions

Résumé

Let f be a C1 bivariate function with Lipschitz derivatives, and F = {x ∈ R2 : f(x) λ} an upper level set of f, with λ ∈ R. We give a new expression of the Euler characteristic of F in terms of the three-points indicator functions of the set, related to its bicovariograms. We also derive a bound on the number of connected components of F in terms of the values of f and its gradient, valid in higher dimensions. In dimension 2, this bound allows to pass this identity to expectations if f’s partial derivatives have Lipschitz constants with finite moments of sufficiently high order, without the requirement of a bounded conditional density. This approach provides an expression of the mean Euler characteristic in terms of the field’s third order marginal. We give sufficient conditions and explicit formulas for Gaussian fields, relaxing the usual C2 Morse hypothesis.
Fichier principal
Vignette du fichier
covariograms-excursions.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01207503 , version 1 (01-10-2015)
hal-01207503 , version 2 (23-03-2017)
hal-01207503 , version 3 (15-11-2017)
hal-01207503 , version 4 (07-12-2018)

Identifiants

Citer

Raphaël Lachièze-Rey. Bicovariograms and Euler characteristic of random fields excursions. 2015. ⟨hal-01207503v2⟩
253 Consultations
235 Téléchargements

Altmetric

Partager

More