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Bicovariograms and Euler characteristic of random fields

excursions

Raphaël Lachièze-Rey ∗

Abstract

Let f be a C1 bivariate function with Lipschitz derivatives, and F = {x ∈ R2 : f(x) > λ}
an upper level set of f , with λ ∈ R. We give a new expression of the Euler characteristic of
F in terms of the three-points indicator functions of the set, related to its bicovariograms.
We also derive a bound on the number of connected components of F in terms of the values
of f and its gradient, valid in higher dimensions. In dimension 2, this bound allows to
pass this identity to expectations if f ’s partial derivatives have Lipschitz constants with
finite moments of sufficiently high order, without the requirement of a bounded conditional
density. This approach provides an expression of the mean Euler characteristic in terms
of the field’s third order marginal. We give sufficient conditions and explicit formulas for
Gaussian fields, relaxing the usual C2 Morse hypothesis.

MSC classification: 60G60, 60G15, 28A75, 60D05, 52A22

keywords: Random fields, Euler characteristic, Gaussian processes, covariograms, intrinsic
volumes, C1,1 functions

1 Introduction

The geometry of random fields excursion sets has been a subject of intense research over the
last two decades. Many authors are concerned with the computation of the mean [3, 4, 5, 8] or
variance [12, 20] of the Euler characteristic, denoted by χ here.

As an integer-valued quantity, the Euler characteristic can be easily measured and used in
many estimation and modelisation procedures. It is an important indicator of the porosity of a
random media [7, 15, 24], it is used in brain imagery [17, 26], astronomy, [20, 21, 23], and many
other disciplines. See also [2] for a general review of applied algebraic topology.

Most of the available works on random fields use the results gathered in the celebrated
monograph [6], or similar variants. In this case, theoretical computations of the Euler charac-
teristic emanate from Morse theory, where the focus is on the local extrema of the underlying
field instead of the set itself. For the theory to be applicable, the functions must be C2 and
satisfy the Morse hypotheses, which conveys some restrictions on the set itself.

The expected Euler characteristic also turned out to be a widely used approximation of the
distribution function of the maximum of a Morse random field, and attracted much interest in
this direction, see [3, 8, 9, 26]. Indeed, for large r > 0, a well-behaved field rarely exceeds r,
and if it does, it is likely to have a single highest peak, which yields that the level set of f at
level r, when not empty, is most often simply connected, and has Euler characteristic 1. In this
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fashion, Eχ({f > r}) ≈ P(sup f > r), which provides an additional motivation to compute the
mean Euler characteristic of random fields.

Even though [4] provides an asymptotic expression for some classes of infinitely divisible
fields, most of the tractable formulae concern Gaussian fields. One of the ambition of this
paper is to provide a formula that is tractable in a rather general setting, and also works in
the Gaussian realm. There seems to be no particular obstacle to extend these ideas to higher
dimensions in a further work.

Approach and main results

Given a set A ⊂ R2, let Γ(A) be the class of its bounded connected components. We say that
a set A is admissible if Γ(A) and Γ(Ac) are finite, and in this case its Euler characteristic is
defined by

χ(A) = #Γ(A)−#Γ(Ac),

where in all the paper # denotes the cardinality of a set. The theoretical results of Adler and
Taylor [6] regarding the Euler characteristic of random excursions require second order differ-
entiability of the underlying field f , but the expression of the mean Euler characteristic only
involves the first-order derivatives, suggesting that second order derivatives do not matter in the
computation of the Euler characteristic. In the words of Adler and Taylor (Section 11.7), regard-
ing their Formula (11.7.6), it is a rather surprising fact that the [mean Euler characteristic of
a Gaussian field] depends on the covariance of f only through some of its derivatives at zero,
the latter refering to first-order partial derivatives. We present here a new method for which
the second order differentiability is not needed. The results are valid for C1 fields with locally
Lipschitz derivatives, also called C1,1 fields, relaxing slightly the classical C2 Morse hypothesis.

Our results exploit the findings of [18] connecting smooth sets Euler characteristic and var-
iographic tools. For some λ ∈ R and a bi-variate function f , define

δη(x, f, λ) = 1{f(x)>λ,f(x+ηu1)<λ,f(x+ηu2)<λ}, η ∈ R.

where (u1,u2) denotes the canonical basis of R2, assuming f is defined in these points. For
W ⊂ R2. Let us write a corollary of our main result here. A more general statement can be
found in section 3.

Corollary 1. Let W = [0, a]× [0, b] for some a, b > 0, f be a C1 real random field on R2 with
locally Lipschitz partial derivatives ∂1f, ∂2f , λ ∈ R, and note F = {x ∈W : f(x) > λ}. Assume
furthermore that the following conditions are satisfied:

(i) For some κ > 0, for x ∈ R2, the density of the random vector (f(x), ∂1f(x), ∂2f(x)) is
bounded by κ on R3.

(ii) There is p > 6 such that

E[Lip(f,W )p] <∞, E[Lip(∂if,W )p] <∞, i = 1, 2,

where Lip(·,W ) denotes the Lipschitz constant on W .

Then χ(F ) is a well-defined integrable random variable and

Eχ(F ) = lim
ε→0

∑
x∈εZ2

[Eδε(x, f1W , λ)−Eδ−ε(x,−f1W ,−λ)] (1)

= lim
ε→0

ε−2

∫
R2

[
Eδε(x, f1W , λ)−Eδ−ε(x,−f1W ,−λ)

]
dx. (2)
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This quantity is related to the bicovariogram of the set F , defined by

δx,y0 (F ) = `(F ∩ (F + x)c ∩ (F + y)c), x, y ∈ R2, (3)

in that (2) can be reformulated as

Eχ(F ) = lim
ε→0

ε−2(Eδ−εu1,−εu2

0 (F )−Eδεu1,εu2

0 (F c)).

This approach seems new in the literature. We see that, under suitable conditions, one can
directly compute the mean Euler characteristic of random level sets as a linear integral of the
field’s third order marginal in triples of arbitrarily close arguments. We also give in Theorem
3 a bound on the number of connected components of f ’s excursion, valid in any dimension,
which is finer than just bounding by the number of critical points; we could not locate an
equivalent result in the literature. This topological estimate is interesting in its own and also
applies uniformly to the number of components of pixel approximations of f ’s excursions. We
therefore use it here as a domination in the application of Lebesgue’s theorem to obtain (1)-(2).

It is likely that results presented in Theorem 7 hold in higher dimensions. See for instance
[25], that paves the way for an extension of the results of [18] to random fields on spaces with
arbitrary dimension. Also, the uniform bounded density hypothesis is relaxed and allows for the
density of the (d+1)-tuple (f(x), ∂1f(x), . . . , ∂df(x)) to be arbitrarily large in the neighbourhood
of (λ, 0, . . . , 0). Theorem 7 actually features a result where f is defined on the whole plane and
the level sets are observed through a bounded window W , as is typically the case for level sets
of non-trivial stationary fields, but the intersection with ∂W requires additional notation and
care. See Theorem 9 for a result tailored to deal with stationary fields excursions.

Theorem 10 is specialised to the case where f is a Gaussian field. Under the additional
hypotheses that f is stationary and isotropic, we retrieve in Theorem 11 the standard results
of [6], assuming only C1,1 regularity (classical litterature require C2 Morse fields in dimension
d > 2, or C1 fields in dimension 1).

Let us explore other consequences of our results. Let h : R → R be a C1 test function with
compact support. Using the results of the current paper, it is shown in the follow-up article [19]
that for any deterministic C2 Morse function f on R2 with compact level sets,∫

R2

χ({f > λ})h(λ)dλ = −
2∑
i=1

1{∇f(x)∈Qi}[h
′(f(x))∂if(x)2 + h(f(x))∂iif(x)] (4)

where

Q1 = {(x, y) ∈ R2 : y < x < 0}, Q2 = {(x, y) ∈ R2 : x < y < 0},

yielding applications for instance to shot-noise processes. In the context of random functions,
one can pass this formula to expectations, breaking free from any density hypothesis on f ’s
marginals, at the contrary of analogous results, including those from the current paper. Biermé
& Desolneux [10, Section 4.1] later gave another interpretation of (4), showing that if it is
extended to a random isotropic stationary field, it can be rewritten as the simpler expression,
after appropriate integration by parts,

E

∫
U

χ({f > λ};U)h(λ)dλ = −`(U)E∂iif(0)h(f(0)),

where U is an appropriate open set, and χ({f > λ;U}) is the total curvature of the level set
{f > λ} within U , generalising the Euler characteristic. They obtained this result by totally
different means, via an approach involving Gauss-Bonnet theorem, and giving in general simpler
formulations and proofs, without any requirement on f apart from being C2.
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2 Topological approximation

Let f be a function of class C1 over some domain W ⊂ Rd, and λ ∈ R. Define

F := Fλ(f) = {x ∈W : f(x) > λ}, Fλ+(f) = {x ∈W : f(x) > λ}.

Remark that Fλ+(f) = (F−λ(−f))c. If we assume that ∇f does not vanish on ∂Fλ(f), then
∂Fλ(f) = ∂Fλ+(f) = f−1({λ}), and this set is furthermore Lebesgue-negligible, as a (d − 1)-
dimensional manifold.

According to [13, 4.20], ∂Fλ(f) is regular, in the sense that its boundary is C1 with Lipschitz
normal, if ∇f is locally Lipschitz and does not vanish on ∂Fλ(f). This condition is necessary
to prevent F from having locally infinitely many connected components, which would make
Euler characteristic not properly defined in dimension 2, see [18, Remark 1.15]. We call C1,1

function a differentiable function which gradient is a locally Lipschitz mapping ∂F → R2. Those
functions have been mainly used in optimisation problems, and as solutions of some PDEs, see
for instance [16]. They can also be characterised as the functions which are locally semiconvex
and semiconcave, see [11].

The results of [18] also yield that the Lipschitzness of ∇f is sufficient for the digital approx-
imation of χ({f > λ}) to be valid. It seems therefore that the C1,1 assumption is the minimal
ones ensuring the Euler characteristic to be computable.

Observation window

An aim of the present paper is to advocate the power of variographic tools for computing the
Euler characteristic of random fields excursions. Since many applications are concerned with
stationary random fields on the whole plane, we have to study the intersection of excursions
with bounded windows, and assess the quality of the approximation.

To this end, call admissible rectangle of Rd any set W = I1 × · · · × Id where the Ik are
possibly infinite nonempty open intervals of R. Note ∂kW its k-skeleton, as defined for instance
in [6, Section 6.2], with ∂dW = W . Note corners(W ) = ∂0W , which number is between 0 and
2d. Then call polyrectangle a finite union W = ∪iWi where each Wi is an admissible rectangle,
and for i 6= j, corners(Wi) ∩ corners(Wj) = ∅. Call Wd the class of admissible polyrectangles.
For W ∈ Wd, define the k-dimensional skeleton by ∂kW = (∪i∂kWi ∩ ∂W ) \ (∪j<k∂jW ), 1 6
k < d, ∂dW = W . Note that the closure of W is the disjoint union of the ∂kW, 0 6 k 6 d.

For 0 6 k 6 d, note Ik the class of subsets of {1, . . . , d} with k elements. For W ∈ Wd, 0 6
k 6 d, x ∈ ∂kW , let Ix(W ) ∈ Ik the set of indexes such that the tangent space to W in x is
spanned by the ui, i ∈ Ix(W ). For d = 2, for x ∈ ∂1W, denote by nW (x) the outwards normal
unit vector of W in x. We also call edge of W a segment [x, y] ⊂ ∂W that is not strictly
contained in another such segment of ∂W (in this case, x, y ∈ corners(W )).

Definition 2. Let W ∈ Wd, and f : W → R of class C1. Say that f ’s excursion at some level
λ ∈ R is regular within W at level λ if for 0 6 k 6 d, {x ∈ ∂kW : f(x) = λ, ∂if(x) = 0, i ∈
Ix(W )} = ∅.

For such a function f in dimension 2, it is shown in [18] that the Euler characteristic of its
excursion set F = Fλ(f) ∩W can be expressed by means of its bicovariograms, defined in (3).
For ε sufficiently small

χ(F ) = ε−2[δ−εu1,−εu2

0 (F )− δεu1,εu2

0 (F c)]. (5)

The proof is based on the Gauss approximation of F :

F ε =
⋃

x∈εZ2∩F

(
x+ ε[−1/2, 1/2)2

)
.
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According to [18, Theorem 1.7], for ε sufficiently small,

χ(F ) = χ(F ε)

=
∑
x∈εZ2

(δε(x, f1W , λ)− δ−ε(x,−f1W ,−λ)),

= ε−2

∫
R2

(δε(x, f1W , λ)− δ−ε(x,−f1W ,−λ))dx,

for x ∈ R2. If f is a random field, the difficulty to pass the result to expectations is to dominate
the right hand side uniformly in ε by an integrable quantity, and this goes through bounding
the number of connected components of F and its approximation F ε. This is the object of the
next section.

2.1 Topological estimates

The next result, valid in all dimension d > 1, does not concern directly the Euler characteristic.
Its purpose is to bound the number of connected components of Fλ(f) ∩W by an expression
depending on f and its partial derivatives. It turns out that a similar bound holds for the
excursion approximation (Fλ(f)∩W )ε in dimension 2, uniformly in ε, enabling the application
of Lebesgue’s theorem to the point-wise convergence (5).

Traditionally, see for instance [12, Prop. 1.3], the number of connected components of the
excursion set, or its Euler characteristic, is bounded by using the number of critical points, or
by the number of points on the level set where f ’s gradient is directed towards a predetermined
direction. Here, we use another method based on the idea that in a small connected component,
a critical point is necessarily close to the boundary, where f − λ vanishes. That gives the
relatively closed expression (6) as a bound on the number of connected components. It also
allows in Section 3, devoted to random fields, to relax the usual uniform density assumption on
the marginals of the (d + 1)-tuple (f, ∂if, i = 1, . . . , d), leaving the possibility that the density
is unbbounded around (λ, 0, . . . , 0).

Denote by Lip(g;A) ∈ R+∪{∞}, or just Lip(g), the Lipschitz constant of a function g going
from a metric space A to another. Let W ∈ Wd, g : W → R, C1 with Lipschitz derivatives.
Note Hkd the k-dimensional Hausdorff measure in Rd. Define the possibly infinite quantity, for
1 6 k 6 d,

Ik(g;W ) : = max(Lip(g),Lip(∂ig), 1 6 i 6 d)

∫
∂kW

Hkd(dx)

max (|g(x)|, |∂ig(x)|, i ∈ Ix(W ))
k
,

and I0(g) = #corners(W ). For undetermined cases, put Ik(g;W ) = 0 if Lip(g) = 0, 1 6 k 6 d.

Theorem 3. Let W ∈ Wd, and f : W → R be a C1,1 function. Let F = Fλ(f) or F = Fλ+(f)
for some λ ∈ R. Assume that ∇f does not vanish on ∂F . We have

(i)

#Γ(F ∩W ) 6
d∑
k=0

2kκ−1
k Ik(f − λ;W ), (6)

where κk is the volume of the k-dimensional unit sphere.
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(ii) If d = 2,

#Γ((F ∩W )ε) 6 C

2∑
k=0

Ik(f − λ;W ) (7)

for some C > 0 not depending on f, λ, or ε.

The proof is given in Section 4.

Remark 4. Nothing ensures that right hand sides are finite in the bounds above, as it depends
on how fast f drifts from the value λ. Theorem 7 gives conditions on the marginal densities of
a bivariate random field so that the right hand member has finite expectation.

Remark 5. Similar results hold if f ’s partial derivatives are only assumed to be Holder, i.e.
if there is δ > 0 and Hi > 0, i = 1, . . . , d, such that ‖∂if(x) − ∂if(y)‖ 6 Hi‖x − y‖δ for x, y
such that [x, y] ⊂ W . Namely, we have to change constants and replace the exponent k on the
max by an exponent kδ. We don’t treat such cases here because, as noted at the beginning of
Section 2, if the partial derivatives are not Lipschitz, the upper level set is not regular enough
to compute the Euler characteristic from the bicovariogram, but the proof is exactly the same
as for the C1,1 case.

Remark 6. Calling B the right hand term of (7) and noticing that Fλ+(f)c is an upper level
set of −f , an easy reasoning yields (see [18, Remark 1.17])

|χ((Fλ(f) ∩W )ε)| 6 2B.

3 Mean Euler characteristic of random excursions

To avoid measurability issues, we call here C1 random field over a set Ω ⊆ Rd the data of a
family of random variables {f(x);x ∈ Ω}, such that in each point x ∈ Ω, the variables

∂if(x) := lim
s→0

f(x+ sui)− f(x)

s
, i = 1, 2,

exist a.s., and the fields (∂if(x), x ∈ Ω), i = 1, . . . , d, are a.s. continuous. See [1, 6] for a
discussion on the regularity properties of random fields. Say that the random field is C1,1 if the
partial derivatives are a.s. locally Lipschitz.

Many sets of conditions allowing to take the expectation in (5) can be derived from Theorem
3, we give below a compromise between optimality and compactness. Given a random closed
set F , call supp(F ) the smallest compact set K satisfying F ⊂ K a.s. See [22] for a formal
introduction to the theory of random closed sets.

Theorem 7. Let W ∈ Wd, and f be a C1,1 random field on W , λ ∈ R such that, with F =
Fλ(f), supp(F ) ∩W is bounded. Assume that the following conditions are satisfied:

(i) For some κ > 0, α > 1, for 1 6 k 6 d, x ∈ ∂kW, I ⊂ Ik, the density of the random
(k + 1)-tuple (f(x)− λ, ∂if(x), i ∈ I) satisfies

P(|f(x)− λ| 6 ε, |∂if(x)| 6 ε, i ∈ I) 6 κεαk, ε > 0,

(ii) for some p > dα(α− 1)−1,

E[Lip(f)p] <∞, E[Lip(∂if)p] <∞, i = 1, . . . , d.
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Then E#Γ(F ∩W ) + E#Γ((F ∩W )c) < ∞ and f is a.s. regular within W at level λ. In the
context d = 2, F is a.s. admissible, and (1)-(2) hold with the current W .

Remark 8. In the case where the Lip(f),Lip(∂if), i = 1, . . . , d have a finite moment of order
> d(d + 1), the hypotheses are satisfied if for instance (f(x) − λ, ∂if(x), 1 6 i 6 d) has a
uniformly bounded density, in which case α = (d+ 1)/d is suitable. If α < (d+ 1)/d, i.e. if the
density is unbounded around 0, it requires higher moments for the Lipschitz constants.

The proof is deferred to Section 4. We give an explicit expression in the case where f is
stationary. Boundary terms involve the perimeter of F , so we introduce the related notation
below. Note C1

c the class of compactly supported functions on R2. For a measurable set A, and
u ∈ S1, the unit circle in R2, define the variational perimeter of A in direction u by

Peru(A) = sup
ϕ∈C1c :‖ϕ(x)‖61

∫
A

〈∇ϕ(x),u〉dx,

and the ‖ · ‖∞-perimeter

Per∞(A) = Peru1(A) + Peru2(A),

named so because it is the analogue of the classical perimeter when the Euclidean norm is
replaced by the ‖ · ‖∞-norm, see [14].

Theorem 9. Let f be a C1,1 stationary random field, λ ∈ R, and W ∈ W2 bounded. Assume
that (f(0), ∂1f(0), ∂2f(0)) has a bounded density, and that there is p > 6 such that

E
[
Lip(f ;W )p

]
<∞, E

[
Lip(∂if ;W )p

]
<∞, i = 1, 2.

Then the following limits exist:

χ(f) := lim
ε→0

ε−2
[
Eδε(0, f, λ)−Eδ−ε(0,−f,−λ)

]
Perui(f) := lim

ε→0
ε−1P(f(0) > λ, f(εui) < λ), i = 1, 2,

Vol(f) := P(f(0) > λ),

and we have, with Per∞ = Peru1
+ Peru2

,

Eχ(F ∩W ) = Vol(W )χ(F ) +
1

4
(Peru2

(W )Peru1
(F ) + Peru1

(W )Peru2
(F ))

+ χ(W )Vol(F ) (8)

EPer∞(F ∩W ) = Vol(W )Per∞(F ) + Per∞(W )Vol(F ) (9)

EVol(F ∩W ) = Vol(W )Vol(F ). (10)

The proof of Theorem 7 establishes that the expectations contained in [18, (12)] are finite.
Therefore the result above is a consequence of that proof and [18, Proposition 2.1].

3.1 Gaussian level sets

Let (f(x), x ∈W ) be a Gaussian field on some W ∈ Wd. We assume throughout the section for
simplification that each variable f(x), x ∈W , is centred and has variance 1. Let the covariance
function be defined by

σ(x, y) = Ef(x)f(y), x, y ∈W.
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The book [1] gives some background on Gaussian fields and their regularity. Theorem 2.2.2
states that if the derivative ∂2σ(x, y)/∂x[i]∂y[i] exists and is finite at each point (x, x), x ∈ W ,
the limits

∂if(x) := lim
ε→0

f(x+ εui)− f(x)

ε
, 1 6 i 6 d, x ∈W,

exist in the L2 sense, and they form a Gaussian field. Also, the covariance function of ∂if is
(x, y) 7→ ∂2σ(x, y)/∂x[i]∂y[i], i = 1, . . . , d.

We are interested here in the case where f is of class C1,1. For W bounded, since ‖∂if‖ :=
supx∈W |∂if(x)| is a.s. finite, ‖∂if‖ has finite moments of every order, see (2.1.4) in [6].

Theorem 10. Let f be a C1,1 Gaussian field on a bounded closed set W ∈ Wd. Assume that
for x ∈ W , (f(x), ∂if(x), i = 1, . . . , d) is non-degenerate, and that for some p > d(d + 1), for
i = 1, 2,

ELip(∂if)p <∞.

Then for any λ ∈ R, F = Fλ(f) satisfies the conclusions of Theorem 7.

Proof. Put for notational convenience f (0) := f, f (i) = ∂if, i = 1, . . . , d. We have for i, j ∈
{0, . . . , d},

|Ef (i)(x)f (j)(x)− f (i)(y)f (j)(y)|

6
∣∣∣E [(f (i)(x)− f (i)(y)

)
f (j)(x)

]∣∣∣+
∣∣∣E [f (i)(y)

(
f (j)(x)− f (j)(y)

)]∣∣∣
6 E sup

W
|f (j)|Lip(f (i))‖x− y‖+ E sup

W
|f (i)|Lip(f (j))‖x− y‖,

which yields that the covariance function with values in the space of (d+ 1)× (d+ 1) matrices,

x 7→ Σ(x) := cov(f(x), ∂if(x), 1 6 i 6 d)

is Lipschitz on W . In particular, since det(Σ(x)) does not vanish on W , it is bounded from below
by some c > 0, whence the density of (f(x), ∂1f(x), ∂2f(x)), x ∈ W , is uniformly bounded by
(2π)−d/2c−1/2, and assumption (i) from Theorem 7 is satisfied with α = (d + 1)/d. Since
Lip(f) = supW ‖∇f‖ and E‖∇f‖q <∞ for any q > 1,

ELip(f)q <∞.

Hence indeed Theorem 7-(ii) is satisfied.

Let us give the mean Euler characteristic in dimension 2 under the simplifying assumptions
that the law of f is invariant under translations and rotations of R2. In combination with the
constant variance assumption, it eases certain computations. This implies for instance that in
every x ∈ R2, f(x), ∂1f(x) and ∂2f(x) are independent, see for instance [6] Section 5.6 and
(5.7.3). A nice feature of the following result is that the hypotheses on f match the result, in
the sense that the mean Euler characteristic only depends on the properties of ∇f , and that
the number of times f should be continuously differentiable is only 1.

Theorem 11. Let f = (f(x);x ∈ R2) be a C1,1 stationary isotropic centred Gaussian field on
R2 with constant variance equal to 1, λ ∈ R, F = {x : f(x) > λ}, and let W ∈ W2 bounded.
Assume that

ELip(∂1f,W )p <∞

8



for some p > 6. Define µ = E∂1f(0)2, and Φ(λ) = 1√
2π

∫∞
λ

exp(−t2/2)dt. Then

EVol(F ∩W ) = Vol(W )Φ(λ), (11)

EPer∞(F ∩W ) = Vol(W )2

√
µ

π
exp(−λ2/2) + Per∞(W )Φ(λ), (12)

Eχ(F ∩W ) =

(
Vol(W )

µλ

(2π)3/2
+ Per∞(W )

√
µ

4π

)
e−λ

2/2 +
1√
2π

Φ(λ)χ(W ). (13)

Remark 12. If W is a square, the relation (13) coincides with [6, (11.7.14)], obtained under
stronger requirements for f .

Proof. (10) immediately yields (11). To prove (13), first remark that the stationarity of the field

and the fact that it is not constant a.s. entail that (f(0), ∂1f(0), ∂2f(0))
(d)
= (f(x), ∂1f(x), ∂2f(x)), x ∈

R2 is non-degenerate. Let us show

χ(F ) = lim
ε→0

ε−2E
[
δε(0, f, λ)− δ−ε(0,−f,−λ)

]
=
µλ exp(−λ2/2)

(2π)3/2
. (14)

Fix ε > 0. Let Mε be the 3× 3 covariance matrix of (f(0), f(εu1), f(εu2)). Straightforward
computations show that det(Mε) = ε4µ2 + o(ε4), and

M−1
ε =

1

det(Mε)

(
ε2Wε + ε4Dε

)
, (15)

where the sum of each line and each column of Wε is 0, for ε > 0, and

Wε →W := µ

 2 −1 −1
−1 1 0
−1 0 1

 , Dε → D :=
µ2

4

 −4 2 2
2 −1 1
2 1 −1

 ,

as ε → 0. Denote by 1 the vector (1, 1, 1), and let Λ = λ1, Q = {(t, s, z) : t > 0, s < 0, z < 0}.
Denote by A′ the transpose of a matrix (or a vector) A. We have

Eδε(0, f, λ) =
1√

(2π)3 det(Mε)

∫
Q+Λ

exp

(
−1

2
(t, s, z)′M−1

ε (t, s, z)

)
dtdsdz

and by isotropy and symmetry, for λ ∈ R,

Eδ−ε(0,−f,−λ) = Eδε(0,−f,−λ) = Eδε(0, f,−λ).

Therefore, (8) yields that χ(F ) = limε→0 ε
−2 (Eδε(0, f, λ)−Eδε(0, f,−λ)) . Let X = (t, s, z) ∈

Q,Y = ε√
det(Mε)

X. Since ΛWε and WεΛ are 0, we have

(X + Λ)′M−1
ε (X + Λ)

= Y ′(Wε + ε2Dε)Y︸ ︷︷ ︸
=:γε(Y )

+
2ε3√

det(Mε)
Y ′DεΛ +

ε4

det(Mε)
Λ′DεΛ

Eδε(0, f, λ) =

(√
det(Mε)

ε

)3

exp
(
−λ2 ε4

2 det(Mε)
1′Dε1

)
√

(2π)3 det(Mε)

∫
Q

exp

(
−1

2
γε(Y )− ε3 Y ′DεΛ√

det(Mε)

)
dY

9



and, for some θ = θ(ε, Y, λ) ∈ [−ε3 det(Mε)
−1/2, ε3 det(Mε)

−1/2],

exp

(
− ε3Y ′DεΛ√

det(Mε)

)
− exp

(
ε3Y ′DεΛ√

det(Mε)

)
=− 2

ε3Y ′DεΛ√
det(Mε)

exp(θΛ′DεY )

Therefore, as ε→ 0, ε−2(Eδε(0, f, λ)−Eδε(0, f,−λ)) is equivalent to

ε−2 exp(−λ2/2) det(Mε)

ε3
√

(2π)3

∫
Q

exp(−γε(Y )/2)
−2ε3Y ′DεΛ√

det(Mε)
exp (θY ′DεΛ) dY (16)

∼ − exp(−λ2/2)µ√
2π3

∫
Q

exp(−γε(Y )/2)Y ′DεΛ exp(θY ′DεΛ)dY. (17)

For Y = (x, y, z) ∈ Q, we have

Y ′WY

µ
= 2x2 + y2 + z2 − 2xy − 2xz =2x2 + y2 + z2 + 2|xy|+ 2|xz| > ‖Y ‖2.

Since Wε + ε2Dε →W as ε→ 0, γε(Y ) > µ‖Y ‖2/2 for ε sufficiently small, uniformly in Y ∈ Q.
This yields a clear domination and Lebesgue’s theorem gives χ(F ) = −µ exp(−λ2/2)I(2π3)−1/2

with I =
∫
Q

exp(− 1
2Y
′WY )Y ′DΛdY = 2λJ where

J =

∫
Q

exp(−(2t2 + s2 + z2 − 2ts− 2tz))(s+ z)dtdsdz = −1/4

with the change of variables u = t − s, v = t − z, w = t. Reporting in (16) proves (14). The
computation of Per∞(F ) is similar and simpler and is omitted here.

4 Proofs

We need some general notation before turning to the proofs. For a set A ⊂ Rd, and r > 0, call
A⊕r = {x : d(x,A) 6 r}, where d(x,A) is the Euclidean distance between x and A in Rd. We
also note, for x ∈ Rd, (x[1], . . . , x[d]) its coordinates in the canonical basis. If ϕ is an application

with values in Rd, denote its coordinates by (ϕ(·)[1], . . . , ϕ(·)[d]).

4.1 Proof of Theorem 3

(i) Assume wlog λ = 0 in all the proof. Recall that Γ(F ∩W ) is the collection of bounded
connected components of F ∩ W . For 0 6 k 6 d, note Γk(F ∩ W ) the elements of W that
hit ∂kW , and define recursively Γ+

k (F ;W ) = Γk(F ∩W ) \ Γ+
k−1(F ;W ), 0 6 k 6 d, with the

convention Γ−1(F ;W ) = ∅.
Let 1 6 k 6 d,C ∈ Γ+

k (F ;W ), C ′ arbitrarily chosen in Γ(C ∩∂kW ). Since C ′ does not touch
∂k−1W , it is included in the relative interior of ∂kW within the affine k-dimensional tangent
space to W that contains C ′. Let I ∈ Ik such that for x ∈ C ′, Ix(W ) = I. Let xC ∈ cl(C ′) such
that f(xC) = supC′ f . Since f > λ on C, and the gradient ∇f does not vanish on ∂C, there is
a neighbourhood of xC that does not touch any other connected component of F , whence xC is
a local maximum of f within ∂kW . The Lagrange multipliers Theorem yields that ∂if(xC) = 0
for i ∈ I. Call rC the maximal radius such that BC := (B(xC , rC) ∩ ∂kW ) ⊂ C ′. Since BC
touches ∂F , f has a zero on BC . It follows that |f(x)| 6 2Lip(f)rC and |∂if(x)| 6 Lip(∂if)rC

10



for x ∈ BC , i ∈ I. Call I ′ the set I from which have been removed indexes i ∈ I such that
Lip(∂if) = 0, and hence ∂if = 0 on BC . Define

M(x) = max(|f(x)|/2Lip(f), |∂if(x)|/Lip(∂if), i ∈ I ′) ∈ R+, x ∈ ∂kW.

We have

1 =
1

Hkd(BC)

∫
BC

1{M(x)6rC}H
k
d(dx) = κ−1

k r−kC

∫
BC

1{r−1
C 6M(x)−1}H

k
d(dx)

6 κ−1
k

∫
BC

M(x)−kHkd(dx).

Noticing that

M(x) >
max(|f(x)|, |∂if(x)|, i ∈ I ′)

max(Lip(f),Lip(∂if), i ∈ I ′)
=

max(|f(x)|, |∂if(x)|, i ∈ I)

max(Lip(f),Lip(∂if), i ∈ I)
,

and since the BC are pairwise disjoint, summing over all the C ∈ Γ+
k (F ;W ) and k ∈ {1, . . . , d}

gives the result (with #Γ0(F ;W ) 6 #corners(W )).
(ii) Theorem 1.16 in the companion paper [18], in the context d = 2, features a bound on

χ((F ∩W )ε) in terms of the number of occurrences of local configurations called entanglement
points of F . Roughly, an entanglement point occurs when two close points of F are connected
by a tight path in F . As a consequence, if F is sampled with an insufficiently high resolution in
this region, the connecting path is not detected, and F looks locally disconnected. For formal
definitions, for x, y ∈ εZ2 at distance ε, introduce Px,y the closed square with side-length ε such
that x and y are the midpoints of two opposite sides. Denote P′x,y = ∂Px,y \ {x, y}, which has
two connected components. Then {x, y} is an entanglement pair of points of F if x, y /∈ F and
(P′x,y ∪ F ) ∩ Px,y is connected. We call Nε(F ) the family of such pairs of points. See Figure 1
for an example.

Figure 1: Entanglement point: In this example, {x, y} ∈ Nε(F ) because the two connected
components of P′x,y, in lighter grey, are connected through γ ⊆ (F ∩ Px,y). We don’t have
{x, y} ∈ Nε(F

′).

We introduce the notation Lx, yM = εZ2∩[x, y]\{x, y}, for x, y ∈ εZ2. To acount for boundary
effects, we also consider grid points x, y ∈ εZ2 ∩W ∩F , on the same line or column of εZ2, such
that

• x, y are within distance ε from one of the edges of W (the same edge for x and y)

11



• Lx, yM 6= ∅

• Lx, yM ⊆ εZ2 ∩ F c ∩ F⊕ε.

The family of such pairs of points {x, y} is noted N ′
ε (F ;W ) .

It is proved in [18, Theorem 1.16] that

#Γ((F ∩W )ε) 6 2#(Nε(F ) ∩W⊕ε) + 2#N ′
ε (F,W ) + #Γ(F ∩W ) + 2#corners(W ). (18)

It therefore only remains to bound #(Nε(F )∩W⊕ε) and #N ′
ε (F,W ) to achieve (7). For m > 1

and a function g : A ⊆ Rm → R, introduce the continuity modulus

ω(g,A) = sup
x 6=y∈A

|g(x)− g(y)|.

The bound will follow from the following lemma.

Lemma 13. (i) For {x, y} ∈ Nε(F ), we have for some i ∈ {1, 2}, and i′ such that {i, i′} =
{1, 2},

|f(x)| 6 ω(f, [x, y]) 6 Lip(f)ε

|∂if(x)| 6 ω(∂if, [x, y]) 6 Lip(∂if)ε

|∂i′f(x)| 6 2ω(∂if,Px,y) + ω(∂i′f,Px,y) 6
√

2ε(2Lip(∂if) + Lip(∂i′f)),

and idem for y.
(ii)For x, y ∈ N ′

ε (F,W ), there is z = z(x, y) ∈ Lx, yM, i ∈ {1, 2}, such that

|f(z)| 6 Lip(f)ε

|∂if(z)| 6 Lip(∂if)ε.

The lemma is proved later for convenience. To obtain the integral upper bounds from (7),
note that there is c > 0 such that for ε > 0 sufficiently small, for every x, y ∈W , neighbours in
εZ2, Vol((B(x, ε) ∪B(y, ε)) ∩W ) > ε2/c. Define the possibly infinite quantity, for z ∈W,

M(z) = max(|f(z)|/2Lip(f), |∂if(z)|/2Lip(∂if), |∂i′f(z)|/(2
√

2(Lip(∂1f) + Lip(∂2f))))

Treating undetermined cases 0/0 can be done like in the proof of (i). Lemma 13 then yields

Nε(F ) 6
∑

x,y∈Nε(F )

1{for z∈B(x,ε)∪B(y,ε)∩W,M(z)6ε}

6
∑

x,y∈Nε(F )

cε−2

∫
(B(x,ε)∪B(y,ε))∩W

1{M(z)−1>ε−1}dz

6 4c

∫
W

M(z)−2dz 6 c′I2(f),

for some c′ > 0, because for every z ∈W there are at most 4 couples {x, y} ∈ Nε(F ) such that
z ∈ B(x, ε) ∪B(y, ε).

Now, given w ∈ ∂W , there can be at most 3 pairs {x, y} ∈ N ′
ε (F ) such that w is on the

closest edge of W parallel to [x, y] and z = z(x, y) (defined in Lemma 13) is within distance 3ε
from w, and in this case |f(w)| 6 4Lip(f)ε and |∂if(w)| 6 4Lip(∂if)ε for some i ∈ {1, 2}. We
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have H1
2(B(z, 3ε) ∩ ∂W ) > ε, because z is within distance 2ε from a segment of ∂W parallel to

[x, y]. It follows that, with Mi(w) = max(|f(w)|/4Lip(f), |∂if(w)|/4Lip(∂if))

#N ′
ε (F,W ) 6

∑
x,y∈N ′

ε (F,W )

2∑
i=1

1{for w∈B(z,3ε)∩∂W,Mi(w)6ε}

6
2∑
i=1

∑
x,y∈N ′

ε (F )

1

ε

∫
∂W∩B(z,3ε)

1{Mi(w)−1>ε−1}H1
2(dw)

6
2∑
i=1

3

∫
∂W

Mi(w)−1H1
2(dw) = 24I1(f ; 0).

Proof of Lemma 13. (i) Let x, y ∈ Nε(F ). The definition of Nε(F ) yields a connected path
γ ⊆ (F ∩ Px,y) going through some z ∈ [x, y] and connecting the two connected components
of P′x,y. Since f(x) > 0 and f(z) 6 0, there is a point z′ of [x, y] satisfying f(z′) = 0, hence

|f(x)| 6 ω(f, [x, y]). Note for later that for t ∈ Px,y |f(t)| 6 ω(f,Px,y) 6 Lip(f)
√

2ε.
We assume without loss of generality that [x, y] is horizontal. Let [z′, z′′] be the (also hori-

zontal) connected component of F ∩ [x, y] containing z. After choosing a direction on [x, y], z′

and z′′ are entry and exit points for F , and their normal vectors nF (z′),nF (z′′) point towards
the outside of F . Therefore they satisfy nF (z′)[1]nF (z′′)[1] 6 0, and so ∂1f(z′)∂1f(z′′) 6 0.
This gives us by continuity the existence of a point w ∈ [x, y] such that 0 = ∂1f(w), whence
|∂1f(x)| 6 ω(∂1f, [x, y]). Note for later that |∂1f(t)| 6 ω(∂1f,Px,y) on Px,y. If [x, y] is vertical,
∂2f verifies the inequality instead. Let us keep assuming that [x, y] is horizontal for the sequel
of the proof.

We claim that |∂2f(x)| 6 2ω(∂1f,Px,y) + ω(∂2f,Px,y), and consider two cases to prove it.

• First case ∂2f(z′)∂2f(z′′) 6 0, and by continuity we have w ∈ [x, y] such that 0 = ∂2f(w),
whence |∂2f(·)| 6 ω(∂2f,Px,y) on the whole pixel Px,y. The desired inequality follows.

• Second case ∂2f(z′) > 0, ∂2f(z′′) > 0 (equivalent treatment if they are both < 0). Assume
for instance that z′ is the leftmost point, and that |∂2f(x)| > 2ω(∂1f,Px,y) +ω(∂2f,Px,y),
otherwise the claim is proved. It implies in particular that |∂2f(·)| > 2ω(∂1f,Px,y) on
the whole pixel Px,y. Since |∂1f(·)| 6 ω(∂1f,Px,y) on Px,y, the implicit function theorem
yields a function ϕ (resp. ψ ): [z′[1], z

′′
[1]] → R such that |ϕ′| 6 1/2, (resp. |ψ′| 6 1/2),

ϕ([z′[1], z
′′
[1]]) ⊂ (z′[2]+(−ε/2, ε/2)), (resp. ψ([z′[1], z

′′
[1]]) ⊂ (z′[2]+(−ε/2, ε/2))) and the graph

of ϕ (resp. ψ) coincides with ∂F ∩([z′[1], z
′′
[1]]×(z′[2]+[−ε/2, ε/2]). In particular, ϕ = ψ, and

its graph cannot touch the upper half of ∂Px,y. Applying this to every maximal segment
[z′, z′′] ⊂ (F ∩ [x, y]), we see that every connected component of F touching [x, y], and
hence γ, cannot meet the upper half of Px,y. In particular, it contradicts the definition of
Nε(F ), whence indeed the assumption is proved by contradiction.

We indeed proved that |∂2f(x)| 6 2ω1(∂2f,Px,y) + ω2(∂2f,Px,y).
(ii)Let now {x, y} be an element of N ′

ε (f,W ). We know that Lx, yM∩F c 6= ∅. Let [z′, z′′] ⊂
[x, y] a connected component of F c ∩ [x, y]. If [z′, z′′] is, say, horizontal, since nF (·)[1] changes
sign between z′ and z′′, so does ∂1f , and by continuity there is w ∈ [z′, z′′] where ∂1f(w) = 0.
Calling z the closest point from w in Lx, yM, ‖z−w‖ 6 ε, and by definition of N ′

ε (F,W ), z is also
at distance ε from ∂F = {f = 0}. It follows that |∂1f(z)| 6 Lip(∂1f)ε, |f(z)| 6 Lip(f)ε.
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4.2 Proof of Theorem 7

Assume without loss of generality λ = 0. Let us prove that F is a.s. regular within W at level
λ. For 0 6 k 6 d, I ∈ Ik, note ∂̃kW = ∂kW ∩ supp(F ), and define

θk,I = {x ∈ ∂̃kW : f(x) = 0, ∂if(x) = 0, i ∈ I}.

There is c > 0 such that for ε > 0 sufficiently small, for all x ∈ ∂kW , Hkd(∂kW ∩B(x, ε)) > εk/c.
Define M(y) = max(|f(y)|/Lip(f), |∂if(y)|/Lip(∂if ), i ∈ I), with undetermined cases treated
like in the proof of Theorem 3-(i). For x ∈ θk,I , y ∈ B(x, ε) ∩ ∂kW , M(y) 6 ε. Therefore, for
η > 0,

#θk,I 6 lim inf
ε→0

∫
∂̃kW

1

Hkd(B(x, ε))
1{M(y)6ε}Hkd(dy)

6c lim inf
ε→0

εη
∫
∂̃kW

M(y)−(k+η)Hkd(dy).

Fatou’s lemma yields, with L := max(Lip(f),Lip(∂if ), i = 1, . . . , d),my = max(|f(y)|, |∂if(y)|, i ∈
I),

E#θk,I 6 lim inf
ε→0

εη
∫
∂kW

E

[
Lk+η

mk+η
y

]
Hkd(dy).

Since p > αd
α−1 > αk

α−1 , we can choose q > 1 such that q < α and q′k < p, with q′ = (1− q−1)−1.

In particular, if η is chosen sufficiently small, ELq
′(k+η) < ∞ for 1 6 k 6 d. The fact that

E
∑
I∈Ik #θk,I = 0 follows from a bound uniform in y ∈ ∂kW on

ELq
′(k+η)Em−q(k+η)

y 6C
∫
R+

P(my 6 t−1/(q(k+η)))dt

6C
∫
R+

1 ∨ t−
αk

q(k+η) dt.

Assume wlog that η is chosen so that q(k + η) < αk, so that indeed for all 1 6 k 6 d, the
previous bound is finite (uniformly in y).

Therefore, if d = 2, using (5), χ(F ∩W ) = limε→0 χ((F ∩W )ε) holds a.s. According to
Theorem 3, to apply Lebesgue’s theorem and show that this limit can be passed to expectations,
yielding (1)-(2), it only remains to show EI1(f ;W ) <∞,EI2(f ;W ) <∞. This follows from the
exact same computation as before, with k = 1, 2, and η = 0.
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