Hyperbolic Boundary Value Problems with Trihedral Corners - Archive ouverte HAL
Article Dans Une Revue AIMS series in Applied Mathematics Année : 2016

Hyperbolic Boundary Value Problems with Trihedral Corners

Résumé

Existence and uniqueness theorems are proved for boundary value problems with trihedral corners and distinct boundary conditions on the faces. Part I treats strictly dissipative boundary conditions for symmetric hyperbolic systems with elliptic or hidden elliptic generators. Part II treats the Bérenger split Maxwell equations in three dimensions with possibly discontinuous absorptions. The discontinuity set of the absorptions or their derivatives has trihedral corners. Surprisingly, there is almost no loss of derivatives for the B\'erenger split problem. Both problems have their origins in numerical methods with artificial boundaries
Fichier principal
Vignette du fichier
rauchhalpern.pdf (2.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01203481 , version 1 (24-09-2015)
hal-01203481 , version 2 (03-02-2016)

Identifiants

  • HAL Id : hal-01203481 , version 2

Citer

Laurence Halpern, Jeffrey Rauch. Hyperbolic Boundary Value Problems with Trihedral Corners. AIMS series in Applied Mathematics, 2016. ⟨hal-01203481v2⟩
220 Consultations
130 Téléchargements

Partager

More