Well Posedness of Perfectly Matched or Dissipative Boundary Conditions with Trihedral Corners - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Well Posedness of Perfectly Matched or Dissipative Boundary Conditions with Trihedral Corners

Résumé

Existence and uniqueness theorems are proved for boundary value problems with trihedral corners and distinct boundary conditions on the faces. Part I treats strictly dissipative boundary conditions for symmetric hyperbolic systems with elliptic or hidden elliptic generators. Part II treats the B\'erenger split Maxwell equations in three dimensions with possibly discontinuous absorptions. The discontinuity set of the absorptions or their derivatives has trihedral corners. Surprisingly, there is almost no loss of derivatives for the B\'erenger split problem. Both problems have their origins in numerical methods with artificial boundaries. trihedral angle, B\'erenger's layers, strictly dissipative boundaries, symmetric hyperbolic systems, Maxwell's equations
Fichier principal
Vignette du fichier
paper.pdf (2.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01203481 , version 1 (24-09-2015)
hal-01203481 , version 2 (03-02-2016)

Identifiants

  • HAL Id : hal-01203481 , version 1

Citer

Laurence Halpern, Jeffrey Rauch. Well Posedness of Perfectly Matched or Dissipative Boundary Conditions with Trihedral Corners. 2015. ⟨hal-01203481v1⟩
220 Consultations
130 Téléchargements

Partager

More