Generalized stochastic Lagrangian paths for the Navier-Stokes equation - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Année : 2018

Generalized stochastic Lagrangian paths for the Navier-Stokes equation

Ana Bela Cruzeiro
  • Fonction : Auteur
  • PersonId : 1005677
Shizan Fang
  • Fonction : Auteur
  • PersonId : 828629

Résumé

In the note added in proof of the seminal paper [Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102-163], Ebin and Marsden introduced the so-called correct Laplacian for the Navier-Stokes equation on a compact Riemannian manifold. In the spirit of Brenier's generalized flows for the Euler equation, we introduce a class of semimartingales on a compact Riemannian manifold. We prove that these semimartingales are critical points to the corresponding kinetic energy if and only if its drift term solves weakly the Navier-Stokes equation defined with Ebin-Marsden's Laplacian. We also show that for the torus case, classical solutions of the Navier-Stokes equation realize the minimum of the kinetic energy in a suitable class.
Fichier principal
Vignette du fichier
ACF2016Janvier.pdf (193.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01197123 , version 1 (11-09-2015)
hal-01197123 , version 2 (19-02-2016)

Identifiants

Citer

Marc Arnaudon, Ana Bela Cruzeiro, Shizan Fang. Generalized stochastic Lagrangian paths for the Navier-Stokes equation. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2018, 18 (3), pp.1033-1060. ⟨10.2422/2036-2145.201602_006⟩. ⟨hal-01197123v2⟩
187 Consultations
151 Téléchargements

Altmetric

Partager

More