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Introduction

Euler equations describe the velocity of incompressible non-viscous fluids. Considering these equations on a bounded domain U of R d , or on a compact Riemannian manifold M without boundary, they read

d dt u t + (u t • ∇)u t = -∇p, div(u t ) = 0. (1.1)
Lagrange's point of view consists in describing the position of the particles: for a solution u to (1.1), it concerns solutions of the ordinary differential equation (ODE)

d dt g t (x) = u t (g t (x)), g 0 (x) = x. (1.2) 
When (t, x) → u t (x) is smooth, the ODE (1.2) defines a flow of C ∞ -diffeomorphisms g t .

From the position values, we get the velocity by

u t (x) = d dt g t (g -1 t (x)).
In this case, the two points of view are equivalent. Throughout the whole paper we shall consider the interval of time [0, T ]. Equation (1.2) defines a continuous map

g • : [0, T ] → Diff(M )
from [0, T ] to the group of diffeomorphisms of M .

In a famous work [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l' hydrodynamique des fluides parfaits[END_REF], V.I. Arnold gave a geometric interpretation to the incompressible Euler equation, saying that u is a solution to (1.1) if and only if t → g t is a geodesic on the submanifold of Diff(M ) keeping the volume measure invariant, equipped with the L 2 metric. Equivalently, g • minimizes the action

S[ϕ] = 1 2 T 0 M d dt ϕ t (x) 2 TxM dxdt (1.3)
on C([0, T ], Diff(M )), where dx denotes the normalized Lebesgue measure on U or the normalized Riemannian volume on M (see also [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF]).

In [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF], Y. Brenier gave a probabilistic interpretation to (1.1), by looking for probability measures η on the path space C([0, T ], M ), which minimize the kinetic energy

S[η] = 1 2 C([0,T ],M ) T 0 | γ(t)| 2 T γ(t) M dt dη(γ), (1.4) 
with constraints (e t ) * η = dx, where e t : γ → γ(t) denotes the evaluation map. Let X(γ, t) = γ(t).

Then under η, {X(•, t); t ≥ 0} is a M -valued stochastic process. Moreover, in [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF] as well as in [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF], Brenier proved that such a probability measure η gives rise to a weak solution of the Euler equation in the sense of Di Perna and Majda [START_REF] Diperna | Oscillations and concentrations in weak solutions of incompressible fluid equations[END_REF]. More precisely, define a probability measure µ on [0, T ] × T M by f (t, γ(t), γ ′ (t))dη(γ) dt.

Then µ solves the Euler equation in generalized sense:

v • w(x)α ′ (t) + v • (∇w(x) • v)α(t) µ(dt, dx, dv) = 0
for any α ∈ C ∞ (]0, T [) and any smooth vector field w such that div(w) = 0. We also refer to [START_REF] Ambrosio | Geodedics in the space of measure-preserving maps and plans[END_REF] in which the authors used the theory of mass transportation.

In this work, we will deal with Navier-Stokes equations on a compact Riemannian manifold M . There are two natural ways to define the "Laplace" operator on vector fields. The first way is to use the de Rham-Hodge Laplace operator on differential 1-forms, that is = dd * + d * d. As usual, for a vector field A, we denote by A ♯ the associated differential 1-form; for a differential 1-form ω, we denote by ω ♭ the corresponding vector field. Then we define A = ( A ♯ ) ♭ .

The Weitzenböck formula states that -A = ∆A -Ric(A) (1.5) where ∆A = Trace(∇ 2 A) and Ric is the Ricci tensor. Another natural way, following [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF], is to use the deformation tensor. More precisely, let A be a vector field on M , the deformation tensor Def A is a symmetric tensor of type (0, 2) such that

(Def A)(X, Y ) = 1 2 ∇ X A, Y + ∇ Y A, X . (1.6) 
Then Def : T M → S 2 T * M which sends a vector field to a symmetric tensor of type (0, 2). Let Def * : S 2 T * M → T M be the adjoint operator. According to [START_REF] Mitrea | Navier-Stokes equations on Lipschitz domains in Riemannian manifolds[END_REF], as well as to [START_REF] Taylor | Partial Differential Equations III: Nonlinear Equations[END_REF], we define ˆ = 2Def * Def.

(1.7)

Then on vector fields of divergence free A, it holds true (see [START_REF] Mitrea | Navier-Stokes equations on Lipschitz domains in Riemannian manifolds[END_REF][START_REF] Pierfelice | The incompressible Navier-Stokes equations on non-compact manifolds[END_REF])

-ˆ A = ∆A + Ric(A). (1.8)
Comparing (1.8) to (1.5), the sign of Ric is opposite.

In this work, we will consider the following Navier-Stokes equation on M

d dt u t + ∇ ut u t + ν ˆ u t = -∇p, div(u t ) = 0, (1.9) 
where ν > 0 is the viscosity coefficient. Since div(u t ) = 0, we have M ∇ ut u t , u t dx = 0. Using the relation ˆ = -2Ric and equation (1.9), we get

1 2 d dt M |u t | 2 dt + ν M |du ♯ t | 2 + |d * u ♯ t | 2 dx -2ν M Ric u t , u t dx = 0. (1.10)
When Ric is negative, the above relation yields the existence of Leray's weak solution (see for instance [START_REF] Pierfelice | The incompressible Navier-Stokes equations on non-compact manifolds[END_REF]). For the general case, the existence of Leray's weak solution to (1.9) was proved in [START_REF] Taylor | Partial Differential Equations III: Nonlinear Equations[END_REF] (Theorem 4.6, p.498 and p.504).

In contrast to Euler equations, there is no geometrical interpretation for Navier-Stokes equations. The purpose of this work is to develop a probabilistic interpretation to equation (1.9). Note that in this context, it is suitable to consider that the underlying Lagrangian trajectories are semimartingales ξ t on the manifold M . Comparing to Brenier's generalized flows for Euler equations, the paths t → ξ t are never of finite energy in the sense of (1.3). Instead, we shall consider the mean kinetic energy (see definition (2.13) below). This functional first appeared in stochastic optimal control [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF] as well as in connection with quantum mechanics [START_REF] Zambrini | Variational processes and stochastic versions of Mechanics[END_REF]; we mention also [START_REF] Follmer | Random fields and diffusion processes[END_REF] for the relation of (stochastic) kinetic energy and entropy as well as [START_REF] Yasue | A variational principle for the Navier-Stokes equation[END_REF], for its appereance in the study of the Navier-Stokes equation.

Roughly speaking, the main result of this paper (see Theorem 2.10 below) says that the semi-martingale ξ t in a suitable class is a critical point to the stochastic kinetic energy (2.13) if and only if its drift term u t solves Navier-Stokes equation (1.9) in the sense of Di-Perna and Majda.

In the recent years the functional (2.13) has been used with success in various contexts (see for example [START_REF] Antoniouk | Generalized stochastic flows and applications to incompressible viscous fluids[END_REF][START_REF] Arnaudon | Stochastic Euler-Poincaré reduction[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Arnaudon | Stochastic Lagrangian flows on some compact manifolds[END_REF][START_REF] Chen | Constrained and stochastic variational principles for dissipative equations with advected quantities[END_REF][START_REF] Constantin | A stochastic Lagrangian representation of the threedimensional incompressible Navier-Stokes equations[END_REF][START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF][START_REF] Eyink | Stochastic least-action principle for the incompressible Navier-Stokes equation[END_REF][START_REF] Iyer | A variational principle for the Navier-Stokes equations[END_REF][START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]). In comparison with [START_REF] Antoniouk | Generalized stochastic flows and applications to incompressible viscous fluids[END_REF][START_REF] Arnaudon | Stochastic Euler-Poincaré reduction[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Arnaudon | Stochastic Lagrangian flows on some compact manifolds[END_REF], we do not require, in the present work, that martingales have the flow property.

The organisation of the paper is as follows. In section 2, we shall introduce and study the class of ν-Brownian incompressible semimartingales. We prove that such a semimartingale is a critical point of the corresponding kenetic energy [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF] if and only if it solves the Navier-Stokes equation in the sense of DiPerna-Majda [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF][START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF]. We also prove the existence of a minimum under certain conditions. In section 3, we shall show, in the case of a torus T d , that a classical solution to Navier-Stokes equation gives rise to a ν-Brownian incompressible martingale which realizes the minimum of the kinetic energy in a convenient class.

2 Generalized stochastic paths for the Navier-Stokes equation

In this section, M will denote a connected compact Riemannian manifold without boundary. Let (Ω, F, P ) be a probability space equipped with a filtration {F t ; t ≥ 0} satisfying the usual conditions.

A M -valued stochastic process ξ t defined on (Ω, F, P ) is said to be a semimartingale on M if for any f ∈ C 2 (M ), f (ξ t ) is a real valued semimartingale. This notion is independent of the chosen connection on M ; however, the corresponding local characteristics are dependent of the choice of connection. For a semimartingale (ξ t ) starting from a point x ∈ M and given a connection ∇, the stochastic parallel translation // t along ξ • can be defined and where w t = (w 1 t , • • • , w m t ) is a standard Brownian motion on R m (see for example [START_REF] Bismut | Mécanique aléatoire[END_REF]). For example, if the semimartingale ξ t comes from a stochastic differential equation (SDE) on M :

ζ t = t 0 // -1 s • dξ s is a T x M -
dξ t = X 0 (t, ξ t )dt + m i=1 X i (t, ξ t ) • dw i t , ξ 0 = x, then ξ 0 (t) = X 0 (t, ξ t ) + 1 2 m i=1 (∇ X i X i )(t, ξ t ).
For simplicity, in what follows, we only consider the Levi-Civita connection ∇ on M . As in [START_REF] Arnaudon | Stochastic Euler-Poincaré reduction[END_REF], [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF], we consider the operator

D t ξ = // t lim ε→0 E ζ t+ε -ζ t ε F t , (2.2) 
which is well-defined and equals ξ 0 (t). For a semimartingale ξ t given by (2.1), the Itô formula has the following form (see [START_REF] Bismut | Mécanique aléatoire[END_REF], p. 409)

f (ξ t ) = f (ξ 0 ) + t 0 ∇f (ξ s ), ξ 0 (s) + 1 2 m i=1 ∇ H i (s) (∇f )(ξ s ), H i (s) ds + m i=1 t 0 ∇f (ξ s ), H i (s) dw i s .
(2.3) Let {g t (x, ω); t ≥ 0, x ∈ M, ω ∈ Ω} be a family of continuous semimartingales with values in M . Let P g denote the law of g in the continuous path space C([0, T ], M ), that is, for every cylindrical functional F ,

C([0,T ],M ) F (γ(t 1 ), ..., γ(t n ))dP g (γ) = M C([0,T ],M )
F (g t 1 (x), ..., g tn (x))dP g x dx

where P g = P g x ⊗ dx and under P g x , the semimartingale g t starts from x. We shall say that the semimartingale g t is incompressible if, for each t > 0,

E P g [f (g t )] = M f (x)dx, for all f ∈ C(M ) (2.4)
the expectation being taken with respect to the law P g of g.

Let ν > 0; we shall say that g t is a ν-Brownian semimartingale if, under P g , there exists a time-dependent adapted random vector field u t over g t such that

M f t = f (g t ) -f (g 0 ) - t 0 ν∆f (g s ) + u s , ∇f (g s ) ds, (2.5) 
is a local continuous martingale with the quadratic variation given by

M f 1 t , M f 2 t = 2ν t 0 ∇f 1 , ∇f 2 (g s )ds.
For a semimartingale ξ t given by (2.1), if {H 1 (s), . . . , H m (s)} is an orthogonal system such that for any vector v ∈ T ξs M ,

m i=1 v, H i (s) 2 = 2ν|v| 2 , then it is a ν-Brownian semimartingale.
Example 2.1. In the flat case R d , such a semimartingale admits the following form

dg t (w) = √ 2ν dw t + u t (w) dt, (2.6) 
where (w t ) is a Brownian motion on R d and {u t ; t ≥ 0} is an adapted R d -valued process such that

T 0 |u t (w)| 2 dt < +∞ almost surely.
Example 2.2. For the general case of a compact Riemannian manifold M , we consider the bundle of orthonormal frames O(M ). Let (V t ) t∈[0,T ] be a family of C 1 vector fields such that the dependence t → V t is C 1 . Denote by Ṽt the horizontal lift of V t to O(M ). Let div(V t ) and div( Ṽt ) be respectively the divergence operators on M and on O(M ); they are linked by (see [START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF], p. 595)

div( Ṽt ) = div(V t ) • π,
where π : O(M ) → M is the canonical projection. It follows that if div(V t ) = 0, then div( Ṽt ) = 0. Consider the horizontal diffusion r t on O(M ) defined by the SDE

dr t = √ 2ν d i=1 H i (r t ) • dw i t + Ṽt (r t ) dt, r 0 ∈ O(M ) (2.7)
where {H 1 , • • • , H d } are the canonical horizontal vector fields on O(M ). Let dr be the Liouville measure on O(M ), then the stochastic flow r 0 → r t (r 0 ) leaves dr invariant. Set

ξ(t, x) = π(r t (r 0 )), r 0 ∈ π -1 (x). (2.8)
For any continuous function

f on M , M E(f (ξ(t, x)) dx = M f (x) dx.
Then ξ is an incompressible ν-Brownian diffusion, with

D t ξ(x) = V t (ξ(t, x)).
Remark 2.3. Let P t be the semigroup associated to

1 2 ∆ M + V t with div(V t ) = 0; then for any f ∈ C 2 (M ), d dt M P t f (x) dx = M 1 2 ∆ M P t f + V t P t f dx = 0.
It follows that for any continuous function f : M → R,

M P t f (x) dx = M f (x) dx.
Therefore any SDE on M defining a Brownian motion with drift V gives rise to an incompressible ν-Brownian diffusion ξ with D t ξ(x) = V t (ξ(t, x)).

Example 2.4. Let Z 2 be the set of two dimensional lattice points and define Z 2 0 = Z 2 \ {(0, 0) * }. For k ∈ Z 2 0 , we consider the vector k ⊥ = (k 2 , -k 1 ) * and the vector fields

A k (θ) = ν ν 0 cos(k • θ) |k| β k ⊥ , B k (θ) = ν ν 0 sin(k • θ) |k| β k ⊥ , θ ∈ T 2 ,
where β > 1 is some constant. Let Z2 0 the subset of Z 2 0 where we identify vectors k, k ′ such that k + k ′ = 0 and let

ν 0 = k∈ Z2 0 1 2|k| 2β . The family {A k , B k : k ∈ Z 2
0 } constitutes an orthogonal basis of the space of divergence free vector fields on T 2 and satisfies

k∈ Z2 0 A k , v 2 + B k , v 2 = ν |v| 2 T θ T 2 , v ∈ T θ T 2 ,
and

k∈ Z2 0 ∇ A k A k = 0, k∈ Z2 0 ∇ B k B k = 0.
Consider the SDE on T 2 ,

dξ t = k∈ Z2 0 A k (ξ t ) • dw k t + B k (ξ t ) • d wk t + u(t, ξ t ) dt, θ 0 = θ ∈ T 2 (2.9)
where {w k t , wk t ; k ∈ Z 2 0 } are independent standard Brownian motions on R, and u(t, •) is a family of divergence free vector fields in H 1 (T 2 ), such that,

T 0 T 2 (|u| 2 + |∇u| 2 ) dxdt < +∞.
Then by [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF][START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF], for β ≥ 3, the SDE (2.9) defines a stochastic flow of measurable maps which preserves the Haar measure dx on T 2 . More precisely, for almost surely w, the map x → ξ t (x, w) solution to (2.9) with initial condition x leaves dx invariant; this property is stronger than that of incompressibility.

In what follows, we shall denote by S the set of incompressible semimartingales, by S ν the set of incompressible ν-Brownian semimartingales and by D ν the set of incompressible ν-Brownian diffusions. Clearly we have

D ν ⊂ S ν ⊂ S. Proposition 2.5. Let g ∈ S ν , then for any f ∈ C 2 (M ), E P g ( ∇f (g t ), u t ) = 0.
(2.10)

Proof. Taking the expectation with respect to P g in (2.5), we have

E P g (f (g t )) -E P g (f (g 0 )) = ν t 0 E P g (∆f (g s )) ds + t 0 E P g ( ∇f (g s ), u s ) ds.
It follows that

ν t 0 M ∆f (x) dx ds + t 0 E P g ( ∇f (g s ), u s ) ds = 0.
Since M ∆f (x) dx = 0, we get the result.

Proposition 2.6. Let g t be a semimartingale on M satisfying

dg t (x) = m i=1 A i (g t (x)) • dw i t + u t (w, x) dx, where A 1 , • • • , A m are C 2 divergence free vector fields on M and u t (w, x) ∈ T gt(x) M is adapted such that M E x ( T 0 |u t (w, x)| 2 dt) dx < +∞; if g is incompressible, then for any f ∈ C 2 (M ) E P g ( ∇f (g t ), u t ) = 0. Proof. Let f ∈ C 2 (M ); then by Itô formula (2.3), f (g t ) = f (g 0 ) + M f t + 1 2 m i=1 t 0 ∇ A i (∇f ), A i + ∇f, ∇ A i A i ds + t 0 ∇f (g s ), u s ds,
where M f t is the martingale part. Note that

∇ A i (∇f ), A i + ∇f, ∇ A i A i = L A i L A i f
where L A denotes the Lie derivative with respect to A ; then taking the expectation under E P , we get 1 2

m i=1 M L A i L A i f dx + E P g ( ∇f (g t ), u t ) = 0. Since for each i, M L A i L A i f dx = 0, the result follows.
In general it is not clear whether the incompressibility condition implies the relation (2.10). However, the following is true:

Proposition 2.7. Let A 1 , • • • , A m be C 2+α
vector fields on M and A 0 be a C 1+α vector field with some α > 0; consider

dξ t (x) = m i=1 A i (ξ t (x)) • dw i t + A 0 (ξ t (x)) dt, ξ 0 = x. (2.11)
Then for almost all w, the map x → ξ t (x) preserves the measure dx if and only if div

(A i ) = 0 for i = 0, 1, • • • , m.
Proof. We give a sketch of proof (see [START_REF] Fang | Stochastic differential equations with coefficients in Sobolev spaces[END_REF] for more discussions). By [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF], ; x → ξ t (x) is a diffeomorphism of M and the push forward measure (ξ -1 t ) # (dx) of dx by the inverse map of ξ t admits the density K t which is given by (see [START_REF] Kunita | Stochastic Flows and Stochastic Differentail Equations[END_REF]):

K t (x) = exp - m i=1 t 0 div(A i )(ξ s (x)) • dw i t - t 0 div(A 0 )(ξ s (x)) ds . (2.12) If div(A i ) = 0 for i = 0, 1, • • • , m, it is clear that K t = 1 and x → ξ t (x) preserves dx.
Conversely, K t (x) = 1 for any x ∈ M and t ≥ 0 implies that,

m i=1 t 0 div(A i )(ξ s (x)) • dw i t + t 0 div(A 0 )(ξ s (x)) ds = 0;
or in Itô form:

m i=1 t 0 div(A i )(ξ s (x))dw i t + t 0 1 2 i=1 m L A i div(A i ) + div(A 0 ) (ξ s (x)) ds = 0.
The first term of above equality is of finite quadratic variation, while the second one is of finite variation; so that for each

i = 1, • • • , m, div(A i )(ξ s (x)) = 0 and also 1 2 i=1 m L A i div(A i ) + div(A 0 ) (ξ s (x)) = 0.
It follows that, almost everywhere,

div(A i )(ξ s (x)) = 0 for i = 0, 1, • • • , m; so that div(A i ) = 0 for i = 0, 1, • • • , m.
According to [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF], as well as [START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Iyer | A variational principle for the Navier-Stokes equations[END_REF][START_REF] Eyink | Stochastic least-action principle for the incompressible Navier-Stokes equation[END_REF], we introduce the following action functional on semimartingales.

Definition 2.8. Let

S(g) = 1 2 E P g T 0 |D t g| 2 dt . (2.13)
We say that g has finite energy if S(g) < ∞.

In what follows, we shall denote more precisely D t g(x) for D t g under the law P g x . Then the action defined in (2.13) can be rewritten in the following form:

S(g) = 1 2 M E P g x T 0 |D t g(x)| 2 dt dx. (2.14) 
We first recall briefly known results about the calculus of stochastic variation (see [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF][START_REF] Chen | Constrained and stochastic variational principles for dissipative equations with advected quantities[END_REF]). Let u t (x) be a smooth vector field on a compact manifold (or on R d ) which, for every t, is of divergence zero. Consider an incompressible diffusion g t (x) with covariance a such that a(x, x) = 2µg -1 (x) where g is the metric tensor and time-dependent drift u(t, •). It defines a flow of diffeomorphisms preserving the volume measure. We have:

D t g(x) = u t (g t (x))
and

S(g) = 1 2 T d E P g x T 0 |u t (g t (x))| 2 dt dx.
There are two manners to perform the perturbation.

First perturbation of identity:

Let w be a smooth divergence free vector field and α ∈ C 1 (]0, T [). Consider, for for ε > 0, the ODE,

dΦ ε t (x) dt = ε α ′ (t) w(Φ ε t (x)), Φ 0 (x) = x. (2.15) 
For each t > 0, Φ ε t is a perturbation of the identity map id. By Itô's formula, for each fixed ε > 0, t → Φ ε t (g t (x)) is a semimartingale starting from x. Note that g and Φ ε (g) are defined on the same probability space. It was proved in [START_REF] Cipriano | Navier-Stokes equations and diffusions on the group of homeomorphisms of the torus[END_REF][START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF] that u is a weak solution to Navier-Stokes equation if and only if g is a critical point of S. More precisely, d dε S(Φ ε (g)) | ε=0 = 0 if and only if

T d T 0 u t , α ′ (t)w + α(t) ∇w • u t -ν α(t) w dtdx = 0. (2.16)
Second perturbation of identity:

Note that in [START_REF] Iyer | A variational principle for the Navier-Stokes equations[END_REF], the perturbation of the identity was defined in a different way. For each fixed t > 0, the author of [START_REF] Iyer | A variational principle for the Navier-Stokes equations[END_REF] considered the ODE Definition 2.9. Let M be a compact Riemannian manifold, g a semimartingale on M of finite energy. Define the probability measure µ on [0, T ] × T M by

dΨ t s ds = α(t)w(Ψ t s ), Ψ t 0 (x) = x. (2.17) Set Ψ(g) ε t (x) = Ψ t ε (g t (x)). Then d dε S(Ψ(g) ε ) | ε=0 = 0 if
[0,T ]×T M f (t, x, v) µ(dt, dx, dv) = 1 T E P g T 0 f t, g(t), D t g dt (2.18)
where f : [0, T ] × T M → R is any continuous function.

We have the following result, Theorem 2.10. Suppose that g ∈ S ν . Then g is a critical point of S with variations defined in (2.17) if and ony if µ is a solution to the Navier-Stokes equation in the sense of DiPerna-Majda, that is,

T 0 T M α ′ (t) v • w + α(t) v • ∇ v w -να(t) v • ˆ w dµ(t, x, v) = 0 (2.19)
for all α ∈ C 1 c (]0, T [) and all smooth vector fields w such that div(w) = 0.

Proof. Let Ψ t ε be the perturbation of identity defined in (2.17). Set η ε t = Ψ t ε (g t (x)). Then {η ε t , t ≥ 0} is a semimartingale on M . We denote by (ξ 0 (s), H 1 (s), . . . , H m (s)) the local characteristics of g t (x). By Itô's formula (see [START_REF] Bismut | Mécanique aléatoire[END_REF], p. 408), the drift term in local characteristics of η ε t is given by

D t Ψ t ε (g t (x)) = ∂ ∂t Ψ t ε (g t (x)) + dΨ t ε (g t (x)) • ξ 0 t + 1 2 m i=1 ∇(dΨ t ε )(g t (x))(H i (t), H i (t)), (2.20) 
where dΨ t ε (g t (x)) denotes the differential of Ψ t ε at g t (x). Let ϕ(ε, t)

= D t Ψ t ε (g t (x)) ∈ T η ε t M ; then S(Ψ ε (g)) = 1 2 E P g T 0 ϕ(ε, t) 2 dt .
We have: ϕ(0, t) = D t g(x). Let

ϕ 1 (ε, t) = ∂ ∂t Ψ t ε (g t (x)), ϕ 2 (ε, t) = dΨ t ε (g t (x)) • ξ 0 t , ϕ 3 (ε, t) = 1 2 m i=1 ∇(dΨ t ε )(g t (x))(H i (t), H i (t)).
Since the torsion is free, we have

D dε ϕ 1 (ε, t) | ε=0 = D dε d dt Ψ t ε (g t (x)) | ε=0 = D dt d dε | ε=0 Ψ t ε (g t (x)) = α ′ (t)w(x).
In order to compute the derivative of ϕ 2 , consider a smooth curve β(s) ∈ M such that β(0) = g t (x), β ′ (0) = D t g(x). Then

dΨ t ε (g t (x)) • ξ 0 t = d ds | s=0 Ψ t ε (β(s)). Therefore D dε | ε=0 ϕ 2 (ε, t) = D ds | s=0 d dε | ε=0 Ψ t ε (β(s)) = D ds | s=0 α(t)w(β(s)) = α(t) (∇w)(g t (x)) • D t g(x).
For computing ϕ 3 , we shall use another description given in [START_REF] Bismut | Mécanique aléatoire[END_REF] (p. 405). For the moment, consider a C 2 map f : M → M . Let x ∈ M and two tangent vectors u, v ∈ T x M be given. Let x(t) ∈ M be a smooth curve such that x(0) = x, x ′ (0) = u, and

Y t ∈ T xt M such that Y 0 = v. Define Q(f )(x) : T x M × T x M → T f (x) M by Q(f )(x)(u, v) = d dt | t=0 // -1 t (df (x t ) • Y t ) -df (x) • ∇ u v. (2.21)
Then ϕ 3 can be expressed by

ϕ 3 (ε, t) = 1 2 m i=1 Q(Ψ t ε (g t (x)))(H i (t), H i (t)).
Let β(s) ∈ M be a smooth curve such that β(0) = g t (x) and β ′ (0) = H i (t) and {Y s ; s ≥ 0} be a family of tangent vectors along {β(s);

s ≥ 0} such that Y 0 = H i (t). Set γ(ε, s) = Ψ t ε (β(s)) and X(ε, s) = dΨ t ε (β(s)) • Y s . If R
denotes be the curvature tensor on M , the following commutation relation holds,

D dε D ds X(ε, s) = D ds D dε X(ε, s) + R ∂γ ∂ε , ∂γ ∂s X(ε, s).
We have X(0, 0) = H i (t), ∂γ ∂ε (0, 0) = α(t)w(x), ∂γ ∂s (0, 0) = H i (t); therefore R ∂γ ∂ε , ∂γ ∂s X(ε, s)

| ε=0,s=0 = α(t) R(w(g t (x)), H i (t))H i (t).
Now let c(τ ) ∈ M be a smooth curve such that c(0) = β(s), c ′ (0) = Y s . We have

D dε | ε=0 X(ε, s) = D dτ d dε Ψ t ε (c(τ )) (0, 0) = α(t) D dτ | τ =0 w(c(τ )) = α(t) (∇ Ys w)(β(s)), and 
D ds | s=0 (∇ Ys w)(β(s)) = ∇ H i (t) ∇w, H i (t) + ∇w, ∇ H i (t) H i (t) .
Note that

D dε | ε=0 dΨ t ε (g t (x)) • ∇ H i (t) H i (t) = α(t) ∇w, ∇ H i (t) H i (t) .
Using (2.21), we finally get

D dε | ε=0 ϕ 3 (ε, t) = 1 2 α(t) m i=1 ∇ H i (t) ∇w, H i (t) + R(w, H i (t))H i (t) .
When g t is a ν-Brownian semimartingale, the right hand side of above equality is equal to να(t) (∆w + Ric w)(g t (x)), which, due to (1.8), is equal to

να(t) (-ˆ w)(g t (x)).
In conclusion, for all α ∈ C 1 c (]0, T [) and all smooth vector fields w such that div(w) = 0. Proof. First we notice that in Proposition 4.3 in [START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF], the condition q > 2 insures the tightness of a family of probability measures; this condition can be relaxed to q = 2 using Meyer-Zheng tightness results (see the proof of Theorem 2.13 below). Therefore by Theorem 6.4 in [START_REF] Fang | Heat semi-group and generalized flows on complete Riemannian manifolds[END_REF], equations (2.7) and (2.8) define a diffusion process ξ, which is, a fortiori, in S ν . Therefore by the above computations (see (2.22)), ξ is a critical point to S if and only if

d dε S(Ψ ε (g)) | ε=0 = 0 yields E P g T 0 α ′ (t) w(g t ) • D t g + α(t) (∇ Dtg w)(g t ) • D t g -να(t) ˆ w(g t ) • D t g dt = 0. (2.
E P g T 0 α ′ (t) w(ξ t ) • u t (ξ t ) + α(t) (∇ ut(ξt) w)(ξ t ) • u t (ξ t ) -να(t) ˆ w(ξ t ) • u t (ξ t ) dt = 0,
which yields the result. Remark 2.12. It has been proved in [START_REF] Taylor | Partial Differential Equations III: Nonlinear Equations[END_REF] (see Theorem 4.6, p. 498) that for any u 0 ∈ L 2 (M, dx), there exists {u t , t ∈ [0, T ]} solution to (2.24), satisfying Condition (2.23). Therefore equations (2.7), (2.8) define an incompressible ν-Brownian diffusion ξ on M , which is a critical point of the action functional S.

Note that in Theorem 3.2 of [START_REF] Arnaudon | Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability[END_REF], a variational principle was established by using the first type of perturbations of identity, defined by (2.15); on the other hand the manifold M was supposed there to be a symmetric space in order to insure the existence of semimartingales with the desired properties. A variational principe on a quite general Lie groups framework was derived in [START_REF] Arnaudon | Stochastic Euler-Poincaré reduction[END_REF] (c.f. also [START_REF] Chen | Constrained and stochastic variational principles for dissipative equations with advected quantities[END_REF]).

In [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF], generalized flows with prescribed initial and final configuration were introduced. It is quite difficult to construct incompressible semimartingales with given prescriptions. In order to emphasize the contrast with the situation in [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF], let's see the example of a Brownian bridge g x,y t on R over [0, 1]. It is known that for t < 1, g x,y t solves the following SDE dg x,y t = dw t -g x,y t -y 1 -t dt, g x,y 0 = x.

(2.25)

Then g x,y t → y as t → 1 and we have

E 1 0 |D t g x,y | 2 dt = +∞. (2.26)
Let η be a probability measure on M × M having dx as two marginals; we shall say that the incompressible semimartingale {g t } has η as final configuration if

E P g (f (g 0 , g T )) = M ×M f (x, y) dη(x, y), f ∈ C(M × M ). (2.27) 
This means that the joint law of (g 0 , g T ) is η. If g t is as in Example 2.2, then

E P g (f (g 0 , g T )) = M ×M f (x, y)p T (x, y) dxdy,
where p t (x, y) is the heat kernel associated to (g t ). Conversely if (ρ t (x, y)) is solution to the following Fokker-Planck equation

d dt ρ t (x, y) = ν ∆ x ρ t (x, y) + u t (x), ∇ x ρ t (x, y) ,
with lim t→0 ρ t = δ x , for some u ∈ L 2 ([0, T ], D 2 1 (M )) with div(u t ) = 0, we can construct an incompressible ν-Brownian semimartingale which has ρ T (x, y)dxdy as final configuration.

In any case, we have the following result: Theorem 2.13. Let η be a probability measure as above. If there exists an incompressible ν-Brownian semimartingale g on M of finite energy S(g) such that η is its final configuration, then there exists one that minimizes the energy among all incompressible ν-Brownian semimartingales having η as final configuration.

Proof. Let J : M → R N be an isometric embedding; then dJ(x) :

T x M → R N is such that for each x ∈ M and v ∈ T x M , |dJ(x) • v| R N = |v| TxM . Denote by (dJ(x)) * : R N → T x M the adjoint operator of dJ(x), that is, (dJ(x)) * a, v TxM = dJ(x)v, a R N , a ∈ R N , v ∈ T x M.
Let {ε 1 , . . . , ε N } be an orthonormal basis of R N and set

A i (x) = (dJ(x)) * ε i , i = 1, . . . , N.
Then it is well-known that the vector fields {A 1 , . . . , A N } enjoy the following properties:

(i) For any v ∈ T x M , |v| 2 TxM = N i=1 A i (x), v 2 TxM . (ii) N i=1 ∇ A i A i = 0. Combining (i) and (ii) gives that ∆ M f = N i=1 L 2 A i f for any f ∈ C 2 (M ).
On the other hand, let J(x) = (J 1 (x), . . . , J N (x)); then

dJ(x)v, ε i = dJ i (x) • v = ∇J i (x), v TxM , for any v ∈ T x M.

It follows that

A i = ∇J i , i = 1, • • • , N. (2.28) Let f ∈ C 2 (M ); then there exists f ∈ C 2 (R N ) such that f (x) = f (J(x)
). We have

L A i f = N j=1 ∂ f ∂x j (J(x)) ∇J j (x), A i (x) = N j=1 ∂ f ∂x j (J(x)) A j (x), A i (x) . (2.29) 
Therefore

∆ M f = N i=1 N j,k=1 ∂ 2 f ∂x j ∂x k (J(x)) A j , A i A k , A i + N i=1 N j=1 ∂ f ∂x j (J(x))L A i A j , A i . Notice that N i=1 L A i A j , A i = div(A j ) = ∆ M J j ,
and according to property (i),

N i=1 A j , A i A k , A i = A j , A k .
Finally the Laplacian ∆ M on M can be expressed by

∆ M f = N j,k=1 ∂ 2 f ∂x j ∂x k (J(x)) A j , A k + N j=1 ∂ f ∂x j (J(x)) ∆ M J j . (2.30) 
Having these preparations, we prove now the existence of a g ∈ S ν such that the minimum of action functinal S is attained at g in the class of those in S ν having η as final configuration. Let K = inf g∈Sν

S(g).

There is a minimizing sequence g n ∈ S ν , that is, lim n→+∞ S(g n ) = K. Consider the canonical decomposition: 

J(g n t ) = J(g n 0 ) + M n t + t 0 b n (s) ds. Let M n t = (M n,1 t , • • • , M n,N t ); then M n,i t , M n,j t = 2ν t 0 ∇J i , ∇J j (g n s ) ds. ( 2 
E T 0 |b n (t)| 2 dt ≤ 2S(g n ) + 2T ν ||∆J|| ∞ . Therefore T 0 |b n (t)| 2 dt is bounded in L 2 .
We can use Theorem 3 in [START_REF] Zheng | Tightness results for laws of diffusion processes[END_REF] to conclude that the joint law Pn of (J(

g n • ), M n • , B n • , U n • ) in C([0, T ], R N ) × C([0, T ], R N ) × C([0, T ], R N ) × C([0, T ], R N ×N
) is a tight family, where

B n t = t 0 b n (s) ds, U n t = ( M n,i t , M n,j t
) 1≤i,j≤N .

Let P be a limit point; up to a subsequence, we suppose that Pn converges weakly to P . Again by Theorem 3 in [START_REF] Zheng | Tightness results for laws of diffusion processes[END_REF], under P , the coordinate process

(X t , M t , B t , U t )
has the following properties: Since J(M ) is closed in R N , we see that X t ∈ J(M ). Let

(i) M 0 = B 0 = 0, U 0 = 0, (ii) (M t ) is a local martingale such that U t = ( M i t , M j t ) 1≤i,
X t = J(g t ).
For any f ∈ C 2 (M ), by (2.30), we see that f (g t ) is a real valued semimartingale. In other words, {g t ; t ≥ 0} is a semimartingale on M . Let f ∈ C(M ), the map f •J -1 : J(M ) → R can be extended as a bounded continuous function on R N ; therefore letting n → ∞, we get

M f (x) dx = E(f (g n (t))) = E(f • J -1 (J(g n t ))) → E(f • J -1 (X t )) = E(f (g t )).
In the same way, for f ∈ C(M × M ), we have

M ×M f (x, y) dη(x, y) = E(f (g n (0), g n (T ))) = E(f (J -1 J(g n (0)), J -1 J(g n (T ))))
which goes to, as n → +∞, E(f (g(0), g(T ))).

So g is incompressible and has η as final configuration. Besides, by (2.31), we have

( M i t , M j t ) 1≤i,j≤N = 2ν t 0 ∇J i , ∇J j (g s ) ds. (2.33)
Let f ∈ C 2 (M ); denote by M f t the martingale part of f (g t ). Then by Itô formula,

dM f t = N j=1 ∂ f ∂x j (X t ) dM j t .
Therefore for f 1 , f 2 ∈ C 2 (M ), according to (2.33), we have

dM f 1 t , dM f 2 t = N j,k=1 ∂ f1 ∂x j (X t ) ∂ f2 ∂x k (X t ) 2ν A j , A k gt dt.
On the other hand, using relation (2.29) and property (i), we have

∇f 1 , ∇f 2 = N α=1 L Aα f 1 L Aα f 2 = N j,k=1 ∂ f1 ∂x j ∂ f2 ∂x k A j , A k .
Combinant above two equalities, we finally get We want to see that K = S(g). Firstly using the relation (2.32), for any t ∈ [0, T ],

dM f 1 t , dM f 2 t = 2ν ∇f 1 ,
t 0 dJ(g n s ) • D s g n ds = B n t -ν t 0 ∆J(g n s ) ds. Let φ : C([0, T ], R N ) → R be a bounded continuous function, consider ϕ : C([0, T ], R N ) × C([0, T ], R N ) → R defined by ϕ(B, g) = φ B • -ν • 0 ∆J(g s ) ds .
Then ϕ is a bounded continuous function on

C([0, T ], R N ) × C([0, T ], R N ). It follows that • 0 dJ(g n s ) • D s g n ds converges in law to • 0 dJ(g s ) • D s g ds. Let ε > 0; for n big enough, E T 0 |dJ(g n s ) • D s g n | 2 ds ≤ K + ε.
Now by Theorem 10 in [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF],

E T 0 |dJ(g s ) • D s g| 2 ds ≤ K + ε, or E T 0 |D s g| 2 ds ≤ K + ε. Letting ε → 0 gives S(g) ≤ K. So S(g) = K.
3 Classical solutions and generalized paths 

In what follows, we shall consider

G = g * ∈ S ν ; dg * t = √ 2ν dw t + D t g * dt, g * (0) = g(0), g * (T ) = g(T ) . (3.4) 
Note that semimartingales in G are defined on a same probability space. Let a ∈ R d be fixed. Consider v(w, t) = c(w, t)a; then v is an adapted vector field on T d . Define

g * t = g t + t 0 v(w, s) ds.
Then g * ∈ G.

We have the following result Theorem 3.2. Let g ∈ D ν be given in (3.1). Assume that the process g is associated with the Navier-Stokes equation in the sense that D t D t g = -∇p(t, g t ) a.s. for a regular pression p such that ∇ 2 p(t, x) ≤ R Id, with RT 2 ≤ π 2 . Then g minimizes the energy S in the class G.

Proof. We define the following:

B(g) = 1 2 T 0 |D t g| 2 dt - T 0 p(t, g(t))dt (3.5)
Notice that the function b(x, y) defined in [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF] For each t ≥ 0, the function

x → φ(t, x) is convex on R d as ∇ 2 p(t, x) ≤ R Id. By Itô formula d D t g • g t = d(D t g) • g t + √ 2ν D t g • dw t + |D t g| 2 dt + d(D t g) • dg t .
Analogously,

d(D t g • g * t ) = d(D t g) • g * t + √ 2ν D t g • dw t + D t g • D t g * + d(D t g) • dg * t .
Remarking that d(D t g) • dg t = d(D t g) • dg * t , and making the substraction of the above two equalities, we obtain

d D t g • (g * t -g t ) = d(D t g) • (g * t -g t ) + D t g • D t g * -|D t g| 2 dt. It follows that D T g • (g * T -g T ) -D 0 g • (g * 0 -g 0 ) = T 0 d(D t g) • (g * t -g t ) + T 0 D t g • D t g * -|D t g| 2 dt.
Notice that g * 0 = g 0 , g * T = g T , and using (3.1), we have 

[ 0 ,

 0 T ]×T M f (t, x, v) µ(dt, dx, dv)

  j≤N and (iii) B t = t 0 b(s) ds with T 0 |b(s)| 2 ds < +∞ almost surely.

Example 3 . 1 .

 31 Let α be a real continuous function on R d and set β(w, t) = sin( s ) ds, c(w, t) = d dt β(w, t).

0 E

 0 ε ) | ε=0 = -E T 0 u(T -t, g t ), v(w, t) dt . Let V t = t 0 v s ds. By construction of v, V T = 0. Now by integration by parts, -t, g t ), V (w, t) dt = T 0 d(u(T -t, g t )), V (w, t) dtwhich is equal to, using (3.2), T 0 ∇p(t, g t ), V (w, t) dt. Therefored dε S(g ε ) | ε=0 = T 0 E T d ∇p(t, g t (x)), β(w, t)a dx dt = T (β(w, t))T d ∇p(t, x), a dx dt = 0.

  and only if the equation (2.16) holds. Now we deal with the general case of compact Riemannian manifolds.

  Theorem 2.11. Let (u t ) t∈[0,T ] be a family of divergence free vector fields on M , which belong to the Sobolev space D2 1 and are such that

	22)
	According to (2.18), the above equation is nothing but (2.19).
	As a consequence of this result, we obtain

M T 0 |u t (x)| 2 + |∇u t (x)| 2 dtdx < +∞; (2.23) then equations (2.7), (2.8) define an incompressible ν-Brownian diffusion ξ on M , which is a critical point of the action functional S if and only if u t solves weakly the Navier-Stokes equation, that is, M T 0 u t , α ′ (t)w + α(t) ∇w • u t -ν α(t) ˆ w dtdx = 0 (2.24)

  ∇f 2 gt dt. HessJ(g t ) dg t ⊗ dg t = ν∆ M J(g t ) dt. Therefore we get

								(2.34)
	Since X t = J(g t ), we have						
	dB t = dJ(g t ) • D t g dt +	1 2	HessJ(g t ) dg t ⊗ dg t .
	Relation (2.34) implies that 1 2 B t = 0	t	dJ(g s ) • D s g ds + ν	0	t	∆ M J(g s ) ds.	(2.35)
	In conclusion {g						

t ; t ≥ 0} is a ν-Brownian semimartingale on M or g ∈ S ν .

  In this section, M will be a torus: M = T d . Let g ∈ D ν be the solution of the following SDE onT d dg t = √ 2ν dw t -u(T -t, g t ) dt, g 0 ∈ T d (3.1)where g 0 is a random variable having dx as law, w t is the standard Brownian motion on R d , and {u(t, x); t ∈ [0, T ]} is a family of C 2 vector fields on T d , identified to vector fields on R d which are 2π-periodic with respect to each space component. Suppose that u is a strong solution to the Navier-Stokes equation

∂ ∂t u(t, x) + ∇u(t, x) • u(t, x) -ν ∆u(t, x) = -∇p(T -t, x).

By Itô 's formula,

du(T -t, g t ) = -( ∂u ∂t )(T -t, g t ) -∇u(T -t, g t ) • u(T -t, g t ) + ν ∆u(T -t, g t ) + √ 2ν ∇u(T -t, g t ) • dw t = ∇p(t, g t ) dt + √ 2ν ∇u(T -t, g t ) • dw t (3.2)

According to definition (2.2), D t g = -u(T -t, g t ) and D t D t g = -∇p(t, g t ).

  -D t g • D t g * + |D t g| 2 dt = T -t, g t )dw t -∇p(t, g t )dt . -D t g • D t g * + |D t g| 2 + Rg t • (g * t -g t ) dt * t -g t ) • ∇u(T -t, g t )dw t + -D s g) ds. Since g * 0 -g 0 = g * T -g T = 0, by Poincaré 's inequaliy on the circle to get|D t g * -D t g| 2 dt. |D t g * -D t g| 2 dt. (3.10)Remark that the inequality, for x, y, a, b ∈ Rx 2 -xy -Rb 2 + Rab ≥ |D t g| 2 -D t g • D t g * -R|g t | 2 + Rg t • g * t dt * t -g t ) • ∇u(T -t, g t )dw t + * t -g t ) • ∇u(T -t, g t )dw t + B(g * ).Taking the expectation of this inequality, we obtain(3.6). Notice thatT 0 E(p(t, g t )) dt = T 0 E(p(t, g * t )) dt; then (3.6) yields E(S(g)) ≤ E(S(g * )). The following result provides a perturbation in a natural way and illustrates Theorem 3.2. Proposition 3.3. Let v(w, t) be the vector field constructed in Example 3.1. Consider the following perturbation of g t given by (3.1): -u(T -t, g t ) dt + ε v(w, t) dt, g ε 0 = x.Proof. We see that {g ε ; ε ≥ 0} ⊂ G. We have

	From (3.7) and (3.8), we get Using definition (3.5),
	T √ 0 ≤ -We have g * t -g t = 2ν Since ( T π ) 2 ≤ 1 R , we have T 0 (g T 0 t 0 (D s g T 0 |g * t -g t | 2 dt ≤ ( T π ) 2 T 0 R 2 T 0 |g * t -g t | 2 dt ≤ 1 0 2 T B(g) ≤ -√ 2ν T 0 (g dg ε t = √ 2νdw t Then we have d dε S(g ε ) | ε=0 = 0.	φ(t, g * t ) -φ(t, g t ) dt.	(3.9)
													S(g ε ) =	1 2	E	1 2	x 2 -	1 2	y 2 -	R 2	b 2 +	R 2	a 2
	holds if and only if		1 2	(x -y) 2 ≥	R 2	(b -a) 2 .
	Therefore by (3.10), we have
													T
													0 ≥	0	T	1 2	|D t g| 2 -	1 2	|D t g * | 2 -	R 2	|g t | 2 +	2 R	|g * t | 2 dt.	(3.11)
	Combining (3.9) and (3.11), we get
					0	T	1 2	|D t g| 2 -	1 2	|D t g * | 2 -	R 2	|g t | 2 +	R 2	|g * t | 2 dt
				≤ -	√ 2ν		0	T	(g *
	from which we deduce
			0	T	1 2	|D t g| 2 -	R 2	|g t | 2 + φ(t, g t ) dt
	or	≤ -	√ 2ν	T 1 0 2 |D t g * | 2 -d(D t g) • (g t -g * R 2 |g * t | 2 + φ(t, g * t ) dt, t ) 2ν ∇u((3.7) (g T 0 = T 0 (g * t -g t ) • -√ T T 0 0 1 2 |D t g| 2 -p(t, g t ) dt
			≤ -	√	2ν	0	T	(g *	(3.8)

T 0 Using the convexity, of φ, we have

φ(t, g * t ) -φ(t, g t ) ≥ Rg t -∇p(t, g t ) • (g * t -g t ). * t -g t ) • ∇u(T -t, g t )dw t + T 0 φ(t, g * t ) -φ(t, g t ) dt, t -g t ) • ∇u(T -t, g t )dw t + T 0 1 2 |D t g * | 2 -p(t, g * t ) dt. T 0 |u(T -t, g t ) -ε v(w, t)| 2 dt .