Entropy rigidity of Hilbert and Riemannian metrics
Résumé
In this paper we provide two new characterizations of real hyperbolic $n$-space using the Poincar\'e exponent of a discrete group and the volume growth entropy. The first characterization is in the space of Hilbert metrics and generalizes a result of Crampon. The second is in the space of Riemannian metrics with Ricci curvature bounded below and generalizes a result of Ledrappier and Wang.
Origine | Fichiers produits par l'(les) auteur(s) |
---|