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ENTROPY RIGIDITY OF HILBERT AND RIEMANNIAN METRICS

THOMAS BARTHELME, LUDOVIC MARQUIS, AND ANDREW ZIMMER

ABSTRACT. In this paper we provide two new characterizations of real hyperbolic n-space using the Poincaré
exponent of a discrete group and the volume growth entropy. The first characterization is in the space of
Hilbert metrics and generalizes a result of Crampon. The second is in the space of Riemannian metrics with
Ricci curvature bounded below and generalizes a result of Ledrappier and Wang.

1. INTRODUCTION

For any discrete group I' acting by isometries on a proper metric space (X, d), we define the Poincaré, or
critical, exponent of I' as

1
or(X,d) :=limsup —log #{v € ' | d(o,7y-0) < r}
r—+oo T
where o € X is some fixed point.
If X has a measure p one can also define the volume growth entropy as

1
hoot (X, d, 1) := lim sup - log pu (B-(0)) .

r—+00
If the measure p is Isom(X, d)-invariant, finite on bounded sets, and positive on open sets then
51" (X, d) < h'uol (X7 d7 N’)

and, in some cases, for instance when the action of I" on (X, d) is cocompact, the Poincaré exponent and the
volume growth entropy coincide.

These two invariants have a long and interesting history, as they are intimately related to the geometric
and dynamical property of the space (X,d) (for instance [Man79, FM82]). Moreover, they are often linked
to rigidity phenomenons (for instance [BCG95, BCGI0]).

In this paper we present two new characterizations of real hyperbolic n-space using the Poincaré exponent
of a discrete group and the volume growth entropy. The first characterization (Theorem B) is in the space of
Hilbert metrics and generalizes a result of Crampon [Cra09]. The second characterization (Theorem D) is in
the space of Riemannian metrics with Ricci curvature bounded below and generalizes a result of Ledrappier
and Wang [LW10].

1.1. Hilbert metrics. Given a proper convex subset Q C P(R"™!), we let Hq be the associated Hilbert
metric. The Hilbert metric is a complete length metric on 2 which is invariant under the group of projective
automorphisms of )

Aut(Q) := {p € PGL,11(R) : pQ = Q}.

Moreover, if € is projectively equivalent to the ball B, then (€, Hg) is the Klein—Beltrami model of the real
hyperbolic n-space.
Tholozan recently proved the volume entropy conjecture for Hilbert metrics:
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2 ENTROPY RIGIDITY OF HILBERT AND RIEMANNIAN METRICS

Theorem 1.1. [Thol5] If Q C P(R™) is a proper convex open set then
hoot (€2, Ho, pup) < m — 1.

where pp is the Busemann—Hausdorff volume associated with (2, Hq) (or any bi-Lipschitz equivalent mea-
sure).

In particular the volume growth entropy is maximized when €2 is projectively equivalent to the unit ball.
There are many other examples which maximize volume growth entropy, for instance, Berck, Bernig and
Vernicos [BBV10] proved that, if 9Q is C1'! then

h‘UOl(Q7HQhuB) =n— 1

However, if Q has “enough” symmetry then it is reasonable to expect that hye(Q, Ho,up) = n — 1 if and
only if Q is projectively equivalent to the unit ball. For instance, Crampon proved the following:

Theorem 1.2. [Cra09] Suppose Q C P(R™11) is a proper strictly convex open set and there exists a discrete
group T' < Aut(Q) that acts properly, freely, and cocompactly. Then hyo (2, Ha, up) < n— 1 with equality if
and only if Q is projectively isomorphic to B (and in particular (Q, Hg) is isometric to H" ).

Remark 1.3. If Q C P(R"™) is a proper convex open set and there exists a discrete group I' < Aut(Q) that
acts properly, freely, and cocompactly then Benoist [Ben04] proved that Q is strictly convex if and only if
oQ is C1L.

Our first new characterization of real hyperbolic space removes the strictly convex hypothesis from Cram-
pon’s theorem:

Theorem A. Suppose Q C P(R™"1) is a proper convex open set and there exists a discrete group T < Aut(Q)
which acts properly, freely, and cocompactly. Then hyo (2, Ho, up) < n — 1 with equality if and only if Q is
projectively isomorphic to B (and in particular (Q, Hg) is isometric to H" ).

Remark 1.4. For the Hilbert metric, strict convexity of € is somewhat analogous to negative curvature. In
particular, for a strictly convex set the Hilbert metric is uniquely geodesic, that is every pair of points are
joined by a unique geodesic. Moreover, Benoist [Ben04] proved that when € is strictly convex and has a
cocompact quotient then the induced geodesic flow is Anosov and is C'T®. In his proof of Theorem 1.2,
Crampon first shows that the topological entropy of this flow coincides with the volume growth entropy
and then he uses techniques from hyperbolic dynamics to prove rigidity. For a general convex open set, the
Hilbert metric may not be uniquely geodesic, but one can consider a natural “geodesic line” flow obtained
by flowing along the geodesics that are lines segments in P(Rd). However this flow is only C° and will have
“parallel” flow lines. Thus Crampon’s approach via smooth hyperbolic dynamics will not extend, at least
directly, to the general case.

Our second new characterization of real hyperbolic space replaces compactness with finite volume, but
with the cost of replacing h,, with dr.

Theorem B. Suppose 2 C IF’(R”+1) is a proper convex open set and there exists a discrete group I' which
preserves Q0 and acts properly, freely, and with cofinite volume. Then ér < n — 1 with equality if and only if
Q is projectively isomorphic to B (and in particular (2, Hg) is isometric to H").

When T'\Q is non compact but has finite volume, it is unclear whether or not h,. (2, Ho,up) and
or(Q, Hg) coincide (for Riemannian negatively curved metrics, there exists groups acting with cofinite volume
for which the volume entropy and the critical exponent are distinct [DPPS09]). However, when Q has C!
boundary and is strictly convex then Crampon and Marquis [CM14b, Théoreéme 9.2] proved that these two
asymptotic invariants coincide. We will prove that in the finite quotient case having C* boundary and being
strictly convex are equivalent and thus establish:

Corollary C. Suppose Q2 C IP’(R"H) is a proper convex open set which is either strictly convex or has C!
boundary and such that there exists a discrete group I' which preserves  and acts properly, freely, and with
cofinite volume. Then hyo(Q, Ho, up) < n— 1 with equality if and only if Q0 is projectively isomorphic to B
(and in particular (2, Hg) is isometric to H" ).

Remark 1.5. This result was announced for surfaces by Crampon in [Crall], but his proof was not complete
in the finite volume case since some of the dynamical results used are only fully proved in the compact case.
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1.2. The Blaschke metric. Associated to every Hilbert metric space (2, Hg) is a Riemannian distance Bg
on Q) called the Blaschke, or affine, distance (see, for instance, [Lof01, BH13]). This Riemannian distance
is Aut(Q)-invariant and by a result of Calabi [Cal72] has Ricci curvature bounded below by —(n — 1). In
particular, if d Vol is the associated Riemannian volume form then the Bishop-Gromov volume comparison
theorem implies that
hyot (2, Bq,dVol) < n — 1.

Benoist and Hulin [BH13] showed that the Hilbert distance and the Blaschke distance are bi-Lipschitz

equivalent. Tholozan recently proved the following new relation:

Theorem 1.6. [Thol5] If Q € P(R™) is a proper convex subset, then
Bo < Hq + 1.
In particular,
hoot (2, Ha, 1) < huot(2, Ba, d Vol)
and if ' < Aut(Q) is a discrete group then

or(Q2, Ha) < 0r (92, Bq).

Tholozan’s result allows us to transfer from the Hilbert setting to the Riemannian setting where many
more analytic tools are available.

1.3. Riemannian metrics. In the Riemannian setting we will prove the following characterization of real
hyperbolic space:

Theorem D. Let (X,g) be a complete, simply connected Riemannian n-manifold and T' a group acting by
isometries on X. Suppose that

(1) Ric > —(n—1);

(2) X has bounded curvature;

(3) T acts properly and freely on X and T\X has finite volume;

(4) the Poincaré exponent satisfies ér(X,g9) =n —1
Then X is isometric to the real hyperbolic space H™.

Ledrappier and Wang [LW10] proved the above theorem when the quotient '\ X is assumed to be compact,
in which case you can replace the Poincaré exponent with the volume entropy. Although our proof will
follow the general outline of their argument, only assuming finite volume introduces a number of technical
complications. The bounded curvature assumption and finite volume assumptions are important assumptions
for our argument, but it may be possible to remove them.

Acknowledgments. The first author would like to thank Francgois Ledrappier and Nicolas Tholozan for
helpful discussions. The second author was supported by the ANR Facettes and the ANR Finsler. The third
author was partially supported by NSF grant 1400919.

2. ENTROPY RIGIDITY FOR RIEMANNIAN METRICS

This section is entirely devoted to the proof of Theorem D. It will follow from Proposition 2.7 and
Proposition 2.13 below.

2.1. The Busemann boundary. In this subsection we describe the Busemann compactification of a non-
compact complete Riemannian manifold X.

Fix a point 0 € X. As in [Led10, LW10], we will normalize our Busemann functions so that (o) = 0.
Now, for each y € X, define the Busemann function based at y to be

by(x) = d(l‘,y) - d(y,O)
As each b, is 1-Lipschitz, the embedding y — b, € C(X) is relatively compact when C(X) is equipped with
the topology of uniform convergence on compact subsets. The Busemann compactification X of X is then

defined to be the closure of X in C'(X). The Busemann boundary of X is the set 0X = X \ X. We begin
by recalling some features of this compactification.

Theorem 2.1. Let X be a non-compact complete simply connected Riemannian manifold. Then
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(1) X is open in X, hence the Busemann boundary 0X is compact.
(2) The action of Isom(X) on X extends to an action on X by homeomorphisms and for v € Isom(X)
and £ € 0X the action is given by

(v-&)(@) = &0y ") — (v o).
The first result can be found in [LW10, Proposition 1]. The second assertion is straightforward to prove.
2.2. Patterson-Sullivan measures.

Definition 2.2. Let (X, g) be a non-compact complete simply connected Riemannian manifold and T' <
Isom(X, g) a discrete subgroup with ép < co. A family of measures {v, : 2 € X} on 8X is a (normalized)
Patterson-Sullivan measure if

(1) vo(0X) =1,

(2) for any x,y € X the measures v,, 1, are in the same measure class and satisfy

s ¢y = o=orie@)—¢w)),

dvy
(3) for any g € T, vgy = guVa.

Following the standard construction of Pattersion-Sullivan measures via the Poincaré series (see for in-
stance Section 2 of [LW10]) we obtain:

Proposition 2.3. Let (X, g) be a non-compact complete simply connected Riemannian manifold and T <
Isom(X, g) a discrete subgroup with or < co. Then there exists a Patterson-Sullivan measure {v, : © € X}
on 0X.

2.3. An integral formula. Now suppose (X, g) is a non-compact complete simply connected Riemannian
manifold and I'" < Isom(X, g) is a discrete subgroup with or < co. Moreover, assume that I' acts properly
and freely on X and the quotient manifold M = I'\X has finite volume (with respect to the Riemannian
volume form).

Following [Led10, LW10], we introduce the laminated space

Xy = (X x8X)/T
where T" acts diagonally on the product. The space X, is laminated by the images of X x {¢} under the
projection. The leaves of this lamination inherit a smooth structure from X and using this structure we
can define a gradient V", a divergence div’V, and a Laplacian A" in the leaf direction. A Patterson-
Sullivan measure {v, : & € X} yields a measure on the laminated space X as follows: by definition

dvg (€) = e r¢@)dy,(¢) for all z € X. In particular if dz is the Riemannian volume form on X, then the
measure

dm(z, &) = e "¢ dadu, (€)
is I'-invariant and descends to a measure v on X ;.

Now the function x — um(a)? ) is I-invariant so with a slight abuse of notation the measure v has total
mass

V(X)) = /M Vo (0X)dx.

Since x — v, (5‘)/(\' ) is continuous, if I'\ M is compact then the measure v is finite. For general finite volume
quotients it is not clear when v will be a finite measure, but we can prove the following:

Proposition 2.4. With the notation above, if (X, g) has Ric > —(n—1) and or =n — 1 then v(X ) < oco.

Proof. Since Ric > —(n — 1) the Laplacian comparison theorem implies for any £ € 90X we have
Ae~ (D€ >

in the sense of distribution (see for instance [LW10, Proposition 4]). So in particular, since ér = n — 1, the
function

f(z) = v, (0X) = /8 . e~ (DE@ gy (2)
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is such that Af > 0 in the sense of distributions. However, thanks to the invariance of the Patterson-Sullivan
measure, f is I-invariant and hence descends to a superharmonic function on M =T'\ X. Since M has finite
volume and f is a positive, superharmonic function, f must be constant [Ada92, Proposition 0.2]. Then,

(Xr) = /N (0K)da = /M Vo(OX)dz = /M da = Vol(M). 0

Finally the argument at the end of Section 2 of [LW10] can be used to show the following:

Theorem 2.5. With the notation above, if Y is a continuous vector field on Xp; which is C' along the
leaves X x {&} so that ||Y]|, and div™V'Y are in LY(Xyy, dv) then

/ div’’ Ydv = or / (Y,VV¢) dv.

Remark 2.6. Since HVW§ H < 1 almost everywhere we see that

/|<Y,VW§>‘d1/</||Y||gdz/<oo.

Thus the right hand side of the equation in Theorem 2.5 is well defined.
2.4. A special Busemann function.

Proposition 2.7. Suppose (X, g) is a complete simply connected Riemannian manifold with Ric > —(n—1)
and bounded sectional curvature. Assume I' < Isom(X) is a discrete group that acts properly and freely on
X so that M = T\ X has finite volume (with respect to the Riemannian volume form). If r = n — 1 then
there exists &y € 0X so that A& =n—1.

For the rest of the subsection assume (X, g) and T < Isom(X, g) satisfy the hypothesis of Proposition 2.7.
Let pi(x,y) be the heat kernel on X. By Theorem 4 in [CLY81], we have that, for any ¢ > 0 there exists
C = C(t) =2 1, such that

—d(x,y)?

pi(x,y) < Ce™ ©
On the space X = X x 0X define the function

Fy(a,€) = /X P, y)E)dy.

Because of the estimate on p;(z,y) above F; is well defined. In Appendix A we will use standard facts about
the heat kernel to prove the following:

Proposition 2.8. With the notation above,
(1) For anyt >0 and £ € 8)/(:, the function x — Fy(x,§) is C™.
(2) For any t > 0, the functions (x,€) = VyFy(x,&) and (x,§) = Ay Fy(x,€) are continuous.
(3) For anyt >0 and £ € 0X,

IVaFy(, &) < V"
(4) For anyt >0 and £ € 8)?,
A Fi(z,8) <n—1.

Now, let Z(x,g) = V. Fi(2z,£). Then Y; descends to a continuous vector field Y; on Xj; which is O
along the leaves X x {£}.

Lemma 2.9. Suppose M is a complete Riemannian manifold and xo € M, then there exists C' > 0 so that
for any r > 4 there is a C*° function @, : M — R such that

(1) 0< o, <1onM,

(2) ¢ =1 on B.(x0),

(3) ¢ =0 on M\ Ba.(x0),

(4) IVer|| < C/r on M.
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Proof. Pick a smooth function f: [0,00) — R such that 0 < f <1, f =1 on [0,1], and f =0 on [2,00). Let
Cy = max{|f’(t)|}. Next, let g: [-1/3,4/3] — [0,1] be a C*° function with g =0 on [-1/3,1/3] and g =1
on [2/3,4/3]. Let Cy = max{|¢'(t)|}. We claim that C = 2C;C5 satisfies the conclusion of the lemma.

Fix r > 0 and define the function ¢ : M — R by

¢(x) = fd(z,z0)/7).

Then ¢ is Cy/r-Lipschitz. Then, we can approximate ¢ by a C* function, 6: X — R, so that |¢ — 0| < 1/r
and @ is 2C1 /r-Lipschitz (see, for instance, [AFLMRO07]). Finally, define

er(@) := g(0(x)).
Then 0 < ¢, < 1 on N by construction. Moreover, if z € B,(zg), we have that ¢(x) = 1 and so,
O(x) e [1—-1/r,1+1/r] C [2/3,4/3]. Thus, ¢, (z) = 1. Similarly, if x € M\ Ba,(zo) then ¢,(z) = 0. Finally,
we see that ¢, is 2C7Cs /r-Lipschitz. O

Next, let ¢,.: M — R be as in the above lemma for some xy € M. Then, define ﬁ,: Xx0X 5 R by
jN}(:L', &) = ¢r(n'(x)), where ' : X — M is the universal cover map. Since fr is I-invariant, it descends to a
continuous function f,.: X3 — R which is C* along the leaves X x {£}.

Let o € X be a preimage of zyp € M. For r > 0, let K,, C X be the image of B,.(Zp) % dX under the
map

m: X X 8)? — Xm-

Lemma 2.10. K, is compact, f., =1 on K,., and f. =0 on X \ Ko,
Proof. Clearly, K, is compact by definition. Notice that (2,8) € n7YK,) if and only if = € Uyer By (7Zo).
Thus, if (z,€) € 771(K,) then f.(x,£) =1, and, if (x,£) ¢ 71 (Kaz,) then f,. = 0. O
Lemma 2.11. For anyr >0 andt > 0,

17 Y2l € L' (Xar, dv)

and
div™ (f,Y;) € LY (X, dv).

Proof. Since ||f.Yi|| < e D the first assertion is obvious. Now

A (£, Y2) = f vV Y, + (VY LY,

SO
W W Ce(nfl)t
/ div”” f.Y;|dv < / frldiv? Y| dv + ——v(X ).
Xm XM r

However, the support of f,. is compact in X, and the map (z, &) — A, F(z,§) is continuous. Thus, divVy,
is bounded on the support of f,.. Hence,

/ I ldivV Y| dr < +oc. O

Xm

Lemma 2.12. For anyt > 0,

Proof. For a real number ¢, let t7 = max{0,¢} and ¢~ = min{0,¢}. Then,

/)’(]u

and, by Proposition 2.8,

divV'y, e LY (X, dv),
and
div™V'y;

dv < <2n -2+ C> e V(X \ K.
r

diVW(Yt)‘ dv = divW(Yt)+dV — divW(Yt)_dV
Xm X

/X div?V (V) Ydv < (n — 1)v(Xay).

So, it is enough to bound the integral of div"Y (V;)~.
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By Theorem 2.5,

/ div™ (f,Y)dv = (n — 1) (Y3, V) dv.
X Xnm

So, by Proposition 2.8,

‘ div™V (f,Y)dv| < (n— 1)e Dt (X)y).
Xm
Now,
w w Ce(nfl)t

div™ £,y = fr divV Y, + (VVf V) and - (VY] < ———

SO
W ¢ (n—1)t
frdivV(Y)dv| < | —+n—1]e¢ v(Xar).
XM r

Then

—/frdivW(Yt)_dz/:—/frdivW(Yt)dV—i—/frdivW(Yt)eru
< —/frdivW(Yt)dy-i—(n—l)y(XM).

Which implies that

- / frdiv? (V) "dv < (C +2n — 2) eV (X ).
r

Finally lim, ., f = 1 and so, by Fatou’s Lemma,

T—00

—/ div?V(Y;)dv < liminf—/fr div™V(Yy)"dv < (2n — 2) e V(X ).
XM

By the remarks at the start of the proof we then have that div’’Y; € LY (X, dv).
To prove the second assertion first observe that, for any r € R, |r| = —r + 2rT. So,

/XM\K2r

A </ (1-f)

Xm

div?” Y}’ dv

= —/ (1 — f)div?” Ytdu+2/ (1 — f)(divV ) Fdv.
XM

XM

Now,

/ (1— f) (™ Yy dv < / (1— £)(n - Ddv < (n— D(Xp \ K,),
Xm

Xmr

and, by Theorem 2.5,

—/ (1 — f)div"V Yidv = — div?” ((1 —fr))’t)dz/+/ (V1 - f,),Ys)dv
X

X1\4 XJVI

Ce(nfl)t

<o-n|[ - pm e+ S K

< <n —1+ O) e V(X \ K).
T

Combining the above inequalities establishes the second assertion of the lemma.
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Now, for any r > 0, we have

/ div"’ Yidv

Xm\Kar

/ </ (div?V Yt)e(”l)g(z)dyo> dx

£€M\Bs,(z0) \JécoM

= / </ div? <Yt67("71)5(“’)) + (n —1)(VW 5,)@6("1)5(“’)(11/0) dz
@€M\Ba, (o) \Je€OM

- / </ div™ (Yte%"*)ﬁ(m)) dz/o> dz + (n— 1)/ (VY €, Y3)dv.
xEM\ By, (z0) \JE€OM X\ Ko

So, by Lemma 2.12, we see that

(1)/ (/ div (me*”—l)&(w))d%)
z€M\Ba,(z0) £coM

< <2n —~2+ f) eI (X \ K,) + (n— V(X \ Kop).

dx

Thanks to Lemma 2.12, we can apply Theorem 2.5 to Yi(x,£). So, redoing the same computations as
above, we get

(n—1) /XM (VW e, V) dy = LGM (/&mdivw (Vie=tr=15) dz/o> d+ (n—1) /XM<VW ¢ Yidv.

and thus

2) / </ div? (Yte*"*)ﬁ(m)) dyo> dz = 0.
zeM \JecoM

We now choose a countable and locally finite open cover {U;} of M such that each U; is small enough so
that 7—1(U;) is a disjoint union of open sets all diffeomorphic to Uj;.

Let {x;} be a partition of unity subordinated to {U;}. For each U;, we choose one connected component
of its lift that we denote by U; and we write X; for the lift of x; to U;.

Now by equation (1) above, for any € > 0, there exists » > 0 so that, for all 0 < ¢ < 1, we have

/ < / divV (Yte*("*)ﬁ@) duo>
€M\ Bz, (z0) ccoM

J = {] eN: Uj ﬂBzr(io) 7& @}

dr < e.

Let

Because the cover M = |J U, is locally finite, we see that J is a finite subset of N. Moreover by Equation 2

Z/ </ _div (Yte_("_l)f(m)> dl/0> x;(x)dz
zeM EeoM

jeT

= —/ (/ _div? (Yte_(”_l)g(”)) duo) Z X;(z)dx
xeM EeoM JET
_/ (/ divWV (y;e—(n—l)ﬁ(w)> d1/0>
x€M\ Bz, (0) ceoM

> —€.

WV

dx
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Then, since the sum is finite,

Z /zeM (/geafvf i (}Qe*(nfl)ﬁ(r)> Xj(w)d%(g)> e

JjeT

- Z/ R / i (Yiem VD) T | dv(€)
jeyJecont \Jael;

= Z/ . / div? (Yte*(”fl)g(f’j)ia da:—/ Yy, VXi)e~ W DE@ g | du,(€)
jegJeeoM zeU; z€eU;

€ xzeU;

JjET

Since the sum is finite, one can send ¢t — 0 to obtain

2 /&aﬁ (/Eﬁ <V£’V>?j>e_(n_1)f(x)d$> dve(§) < e.
jeT xzcU;

By integration by parts, we have

Z/{ off </ . 6_(n_1)§(x)A)zjd$C> dVo(g) = — Z/5 oiF (/ . <V6_("—1)€(a:)’v>zj>dx) dVo(g)
JET VSE z€U; jeglee zel;

=(n— Ve, VY;)e™ P DE@ g | du, (€).
(n 1)Zj/£aﬂ</l]< £.V)e x> (©)

So,

€

j%;/feaﬁ </zel7» n—1

J

e_(n—l)é(ﬁf) AS(}CZI) dVo(g) <

By [LW10, Proposition 4] (that is still true in our context), Ae™ (=D& > 0 in the sense of distribution.
Hence, for all £ € OM and all i,

/ B e_("_l)f(r)Aijdﬂv > 0.
:L‘GUJ'

So, we conclude that for all j € 7, and for v,-a.e. £ € oM

/ B e*("*l)g(m)AZjda: < %1
zeU; n

Since € was arbitrarily small, we deduce that, for all j € N and v,-a.e. £ € OM ,

/ e (V@AY dr = 0.
zeU;

In the argument above, one can replace ﬁj by g - T}j and x; by g-x; for any g € I'. Since I is countable,
we conclude that for any g € I'; any j, and v,-a.e. £ € OM

/ e~ DE@A(g - ¥;)dx = 0.
ng'ﬁi

One can now conclude that, for v,-a.e. £ € 8]/\4\, Ae~ (=D& — () in the sense of distribution in the same
way as in [LW10, p.472], which concludes the proof of Proposition 2.7.
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2.5. Final steps.

Proposition 2.13. Suppose (X, g) is a complete simply connected Riemannian manifold with Ric > —(n—1)
and T' < Isom(X) is a discrete group that acts properly discontinuously on X so that M = T'\X has finite
volume (with respect to the Riemannian volume form,).

If there exists & € 0X so that A&y =n — 1 then X is isometric to the real hyperbolic n-space.

Proof. By the proof of Theorem 6 in [Wan08] if there exists some &; € 0X so that A& =n—1and & # &
then X is isometric to the real hyperbolic n-space. So, suppose for a contradiction, that we have

{¢} ={¢€dX : A¢ =n—1}.
Since
Aly-€)(z) = (Ag) (v 'z)
we see that v - & also has constant Laplacian equal to n — 1. Thus v - &y = &y for all y € T.
Now if v € I we see that

diff(y) -1, V& (v z) = V(&o(v’lw)) = V(fo(v’lx) - 50(7’10)) = V(y-&)(x) = Vo ().

Thus, V&y(z) is a I-invariant vector field, and therefore descends to a vector field V' on M.
Now, divV = n —1 since div V§; = A{y = n — 1, and moreover ||V|| < 1. But, since M has finite volume,
there cannot exists a vector field V with ||V||,divV € L*(M) and divV > 0 (see for instance [Karg1]). O

Putting together Proposition 2.7 and Proposition 2.13 finishes the proof of Theorem D.

Remark 2.14. Note that Proposition 2.13 is not necessary for the proof of Theorem D. Indeed, since we
assume bounded curvature, we can replace Proposition 2.13 by [LW10, Theorem 6]. We however included
that result since it shows that the bounded curvature assumption can be replaced by the finite volume
assumption. In particular, we want to emphasize that the bounded curvature assumption is only used in
order to get the heat kernel estimates needed for Proposition 2.7.

3. ENTROPY RIGIDITY FOR HILBERT METRICS

We begin by observing that the Blaschke metric has bounded sectional curvature. For the definition and
some properties of the Blaschke metric, we refer to [Lof01, BH13].

Lemma 3.1. Let Q) be a proper convex open set in P(R"H). There exists a universal constant C,,, depending
only on the dimension such that the sectional curvature of the Blaschke metric on € is bounded above by C,
and below by —C,,.

Proof. Benzécri [Ben60] proved that the action of PGL,11(R) on the set of pointed proper convex open sets
E = {(z,Q), z € Q} is cocompact, so all we have to show is that the functions that, to an element of £
associates the maximum and minimum of the sectional curvature of the Blaschke metric at z, is PGLj;,4+1(R)
are invariant and continuous. The invariance is clear from the definition of the Blaschke metric, and the
continuity follows from Corollary 3.3 in [BH13]. O

We next prove Theorem B from the introduction:

Theorem 3.2. Suppose ) C P(R”+1) is a proper convex open set and there exists a discrete group I' which
preserves Q0 and acts properly, freely, and with cofinite volume. Then ér < n — 1 with equality if and only if
QO is projectively isomorphic to B (and in particular (2, Hg) is isometric to H").

Proof. Let Bg be the Blaschke metric on 2. Then

(1) T acts by isometries on (£2, Bg) and the action is proper and free,

) Bg has bounded sectional curvature by Lemma 3.1,

) Bgq has Ricci curvature bounded below by —(n — 1) by a result of Calabi [Cal72],
) by Theorem 1.6, ér(Q2, Bg) =n — 1,
)

induced by Bq.



ENTROPY RIGIDITY OF HILBERT AND RIEMANNIAN METRICS 11

Thus, the Blaschke metric satisfies all of the assumptions of Theorem D, so (2, Bg) is isometric to the real
hyperbolic space. Hence, by definition of the Blaschke metric, (2, Hq) is the Klein—Beltrami model of the
hyperbolic space (see [Lof01, Theorem 1]). O

Since or(Q, Hg) = hyot (2, Hq, up) when T' acts co-compactly on Q we immediately deduce Theorem A
from the introduction:

Corollary 3.3. Suppose 2 C }P’(R"‘H) is a proper convexr open set and there exists a discrete group I' <
Aut(Q) which acts properly, freely, and cocompactly. Then hyo (2, Ho, pp) < n— 1 with equality if and only
if Q is projectively isomorphic to B (and in particular (Q, Hg) is isometric to H" ).

In order to prove Corollary C from the introduction, we first show the following;:

Proposition 3.4. Suppose ) C P(Rd) s a proper convex open set and there exists a discrete group I' which
preserves ) and acts properly, freely, and with cofinite volume. Then Q) is strictly convez if and only if OS2
is C.

Proof. Recall that Q is strictly convex if and only if 9Q* is of class C''. Now, by [CLT15, Corollary 6.7], the
quotient /I" is of finite volume if and only if the dual quotient Q*/I'* is also of finite volume. Hence, we
only have to show that if Q is strictly convex and /T is of finite volume then 952 is of class C*.

Suppose that  is strictly convex. We want to use [CLT15, Theorem 0.15] to conclude that 952 is of class
C!. In order to apply that theorem, we need to prove that /T is topologically tame and that the holonomy
of each boundary component is parabolic.

Fix a real € > 0 strictly less than the Margulis constant (see [CM13, Théoréme 1] or [CLT15, Theorem
0.1]). For every z € Q, let T'.(x) be the group generated by the elements of " that moves x at a distance less
than €. By the classification of isometries of proper strictly convex open set, the group I'c(z), if not trivial,
is either hyperbolic (in which case it corresponds to a Margulis tube), or parabolic, and in that case it fixes
a unique point p € 99 (see [CLT15, CM14a, Marl4]).

Since Q/T is of finite volume, the thick part of Q/T" is compact (see [CLT15, Theorem 0.8] or [CM14a,
Lemma 8.5]) and connected component of the thin part correspond to disjoint maximal parabolic subgroups
of T'. Hence, the action of each maximal parabolic subgroup I', on 99 \ {p} is cocompact. So, by [CLT15,
Theorem 5.6], each parabolic fix point p is in fact C'. Therefore, [CLT15, Theorem 0.5] (or [CM14a,
Corollaire 7.18]) show that I', is conjugated to a maximal parabolic subgroup of SO,, 1(R). We can thus
apply [CLT15, Theorem 0.15] to conclude that 9 is of class C*. |

Finally, we can prove Corollary C from the introduction:

Corollary 3.5. Suppose ) C IE”(R"+1) is a proper convex open set which is either strictly convex or has C*
boundary and there exists a discrete group I' which preserves ) and acts properly, freely, and with cofinite
volume. Then hyo(Q, Ha, pp) < n — 1 with equality if and only if Q is projectively isomorphic to B (and in
particular (2, Hg) is isometric to H" ).

Proof. By Proposition 3.4, 9 is C! and 2 is strictly convex. Thus by [CM14b, Théoréme 9.2
hvol(Qa HQv /’LB) = 6F(Q7 HQ)

So the corollary follows from Theorem B. O

APPENDIX A. PROOF OF PROPOSITION 2.8

For the rest of the section suppose that (X, g) is a complete non-compact simply connected Riemannian
manifold with Ric > —(n — 1) and bounded sectional curvature.
For a function f: X — R define the function P;(f): X — R by

PAD@) = [ pilg) )y
X
Lemma A.1. [CLY81, Theorem 4 and Theorem 6] With the notation above, for any T > 0, there exists

C >0 so that
_d(l‘vy)2)

<Ot %
pe(z,y) < Ct™ 2 exp ( o
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and (e, y)2)

R

forallt € (0,T] and z,y € X.
Proof of Proposition 2.8. Recall that Fy(z,¢) = P,(€)(z). We claim that for any ¢ € 8X
(O — Ag)Fi(2,§) =0

in the sense of distributions. Once this is established part (1) and part (2) follow from standard regularity
results (see for instance [Gri09, Theorem 7.4]).

Let ¢ € C2(X x Ry). By Lemma A1, Ao ((z, 1)pe(z, )E(y) and 9(o(x, ))pi(e, y)E(y) ave in L1(X x
X x Ry, dxdydt). Then, using Fubini and the fact that dyp;(x,y) = A.pi(z,y), we obtain

/X o el O RE) e = /X ( /X . Am¢<x7t>pt<x7y>dxdt> £(y)dy
- / ( / ¢<x,t>Axpt<x,y)dxdt> £(y)dy = / ( / ¢<x,t>atpt<x,y)dxdt> £(y)dy
x \JxxRr4 x \Jxxry

-/ (/ 3f¢(f“vt>pt<xvy>dwdt> )y = [ ()P @dudr
X X xRy X xRy

(at — Az)Ft($,f) =0
in the sense of distributions. So part (1) and (2) are established.
Now, by [BE84], since Ric = —(n — 1), if f € C°(X) then

IVP(f)lloo <™Vl

Thus

Moreover, for any & € 0X , there exists a sequence f,, € C°(X) so that f,,, converges to ¢ locally uniformly
and ||V fnll, — 1 (see, for instance, [AFLMRO07]). Hence, each Py(fy,) is e~V ||V f,, || -Lipschitz. More-
over, by Lemma A.l and the dominated convergence theorem, P;(f,,)(x) — Pi(§)(z) for all z € X. Thus,
P;(¢) is eVt Lipschitz and
IV Fy(x, )| < eV
Now, for any ¢ € C°(X), we have

| Aot Pie) e = [ (/ o tptw)dx) iy
= [ ([ owaumanic) stan= [ a,p@wewa.

For r > 0, let ¢, : X — R be as in Lemma 2.9. Then

/X Ay PU9) W)E()dy = /X A, ()P (0) ) ) y)dy + /X A, (1= )W PO W) ) &)y
<=1 [ cwP@wir+ [ 8,(0-e)0P6)0)w)d

Using the dominated convergence theorem once again, we have

lim [ e P@ = [ Py = [ oo

Moreover, since integration by parts holds for Lipschitz functions,

| au(a=eowr@m)smay=— [ (v,(a- wr)(y)Pt(¢)(y)>,Vy§(y)> dy

¢ /Pt y)dy + / V&) w)] dy.
X\B, (o)
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VP(6)(y) = /X Vi, y)d(x)dz,

and so, by Lemma A.1,

Thus,

IVP(&) ()l € L (X, dy).

lim IVE(6)(y)ll dy = 0.
r—00 X\B,(0)

Which implies that

and thus

tim [ A, (=) WP ) )W)y =0,

T—00 X

[ Aso@P©@ar < n-1) [ o).
X X

Since £ € 0X and ¢ € C°(X) were arbitrary, we see that
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