Reparameterization invariant metric on the space of curves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Reparameterization invariant metric on the space of curves

Résumé

This paper focuses on the study of open curves in a manifold M , and its aim is to define a reparameterization invariant distance on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M = Imm([0, 1], M) by pullback of a metric on the tangent bundle TM derived from the Sasaki metric. We observe that such a natural choice of Riemannian metric on TM induces a first-order Sobolev metric on M with an extra term involving the origins, and leads to a distance which takes into account the distance between the origins and the distance between the image curves by the SRVF parallel transported to a same vector space, with an added curvature term. This provides a generalized theoretical SRV framework for curves lying in a general manifold M .
Fichier principal
Vignette du fichier
gsi-lebrigant.pdf (167.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01179508 , version 1 (23-07-2015)
hal-01179508 , version 2 (27-10-2015)

Identifiants

Citer

Alice Le Brigant, Marc Arnaudon, Frédéric Barbaresco. Reparameterization invariant metric on the space of curves. 2015. ⟨hal-01179508v1⟩
208 Consultations
298 Téléchargements

Altmetric

Partager

More