Reparameterization invariant metric on the space of curves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Reparameterization invariant metric on the space of curves

Résumé

This paper focuses on the study of open curves in a manifold M , and proposes a reparameterization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. in [11] to define a reparameterization invariant metric on the space of immersions M' = Imm([0,1], M) by pullback of a metric on the tangent bundle TM' derived from the Sasaki metric. We observe that such a natural choice of Riemannian metric on TM' induces a first-order Sobolev metric on M' with an extra term involving the origins, and leads to a distance which takes into account the distance between the origins and the distance between the SRV representations of the curves. The geodesic equations for this metric are given, as well as an idea of how to compute the exponential map for observed trajectories in applications. This provides a generalized theoretical SRV framework for curves lying in a general manifold M .
Fichier principal
Vignette du fichier
reparameterization_invariant_metric.pdf (155.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01179508 , version 1 (23-07-2015)
hal-01179508 , version 2 (27-10-2015)

Identifiants

Citer

Alice Le Brigant, Marc Arnaudon, Frédéric Barbaresco. Reparameterization invariant metric on the space of curves. 2015. ⟨hal-01179508v2⟩

Collections

CNRS IMB INSMI
208 Consultations
298 Téléchargements

Altmetric

Partager

More