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Abstract. This paper focuses on the study of open curves in a manifold M ,
and its aim is to define a reparameterization invariant distance on the space
of such paths. We use the square root velocity function (SRVF) introduced by
Srivastava et al. in [11] to define a reparameterization invariant metric on the
space of immersions M = Imm([0,1], M) by pullback of a metric on the tangent
bundle TM derived from the Sasaki metric. We observe that such a natural
choice of Riemannian metric on TM induces a first-order Sobolev metric on
M with an extra term involving the origins, and leads to a distance which takes
into account the distance between the origins and the distance between the
image curves by the SRVF parallel transported to a same vector space, with an
added curvature term. This provides a generalized theoretical SRV framework
for curves lying in a general manifold M .

1 Introduction

Computing distances between shapes of open or closed curves is of interest in many
fields that require shape analysis, from medical imaging to video surveillance, to
radar detection. While the shape of an organ or a human contour can be modeled by
a closed plane curve, some applications require the manipulation of curves lying in
a non flat manifold, such as S2-valued curves representing trajectories on the earth
or curves in the space of hermitian positive definite matrices, where the values rep-
resent covariance matrices of Gaussian processes. The shape space of planar curves
has been widely studied ([7],[8],[13],[1]), and the more general setting of shapes lying
in any manifold M has recently met great interest ([3],[12],[5],[14]). Here we consider
open oriented curves in a Riemannian manifold M , more precisely the space of im-
mersions c : [0,1] → M ,

M = Imm([0,1], M).

Reparameterizations will be represented by increasing diffeomorphisms φ : [0,1] →
[0,1] (so that they preserve the end points of the curves), and their set is denoted
by Diff+([0,1]). Then, one way to describe a shape is as the equivalence class of all
the curves that are identical modulo reparameterization, and the shape space as the
associated quotient space,

S = Imm([0,1], M)/Diff+([0,1]).



The formal principal bundle structure π : M → S induces a decomposition of the
tangent bundle T M = V M ⊕ HM into a vertical subspace V M = ker(Tπ) consist-
ing of all vectors tangent to the fibers of M over S , and a horizontal subspace HM =
(V M )⊥G defined as the orthogonal complement of V M according to the metric
G that we put on M . We say formal because the manifold structure of the space
Imm([0,1], M) has not yet been thoroughly studied to our knowledge. We require
that G be reparameterization invariant, that is to say that the action of Diff+([0,1])
be isometric for G

Gc◦φ(h ◦φ,k ◦φ) =Gc (h,k), (1)

for any curve c ∈M , reparameterization φ ∈ Diff+([0,1]), and infinitesimal deforma-
tions h,k ∈ TcM – h and k can also be seen as vector fields along the curve c in M . If
this property is satisfied, then G induces a Riemannian metric Ĝ on the shape space,

Ĝπ(c) (Tcπ(h),Tcπ(k)) =Gc (hH ,k H ),

in the sense that the above expression does not depend on the choice of the repre-
sentatives c, h and k. Here hH ,k H denote the horizontal parts of h and k according
to the previously mentioned decomposition, as well as the horizontal lifts of Tcπ(h)
and Tcπ(k), respectively. The geodesic distances d on M and d̂ on S are then simply
linked by

d̂ ( [c0] , [c1] ) = inf
{

d
(
c0,c1 ◦φ

) | φ ∈ Diff+([0,1])
}

,

where [c0] and [c1] denote the shapes of two given curves c0 and c1. The most natu-
ral candidate for a reparameterization invariant metric G on M is the L2-metric with
integration over arc length, but Michor and Mumford have shown in [6] that the in-
duced metric Ĝ on the shape space always vanishes. This has motivated the study
of Sobolev metrics ([8],[1],[2]), and particularly of a first-order Sobolev metric on the
space of plane curves,

Gc (h,k) =
∫
〈Ds h⊥,Ds k⊥〉+ 1

4
〈Ds hË,Ds kË〉ds, (2)

where we integrate according to arc length ds = ∥∥c ′
∥∥dt and 〈·, ·〉 denotes the eu-

clidean metric on IR2, Ds h = 1
‖c ′‖h′ is the derivation of h according to arc length,

Ds hË = 〈Ds h, v〉v is the projection of Ds h on the unit length tangent vector field
v = 1

‖c ′‖c ′ along c, and Ds h⊥ = 〈Ds h,n〉n is the projection of Ds h on the unit length
normal vector field n along c. This particular first-order Sobolev metric is of interest
because it can be studied via the square root velocity (SRV) framework, introduced
by Srivastava et al. in [11] and used in several applications ([4],[12]). This framework
can be extended to curves in a general manifold by using parallel transport, in a way
which allows us to move the computations to the tangent plane to the origin of one
of the two curves under comparison, see [5] and [14]. In [5] the transformation used
is a generalization of the SRV function introduced by Bauer et al. in [1] as a tool to
study a more general form of the Sobolev metric (2). In [14] a Riemannian frame-
work is given, including the associated Riemannian metric and the geodesic equa-
tions. While our approach in this paper is similar, we feel that the distance we intro-
duce here will be more directly dependent on the "relief" of the manifold, since it is



computed in the manifold itself rather than in one tangent plane as in [5] and [14].
This enables us to take into account a greater amount of information on the space
separating two curves.

2 New metric on the space of parameterized curves

We consider the square root velocity function (SRVF) introduced in [11] on the space
of curves in M ,

R : M → T M , c 7→ c ′√
‖c ′‖

,

where ‖·‖ is the norm associated to the Riemannian metric on M . This function will
allow us to define a metric G on M by pullback of a metric G̃ on T M . First, we define
the following projections from T T M to T M . Let ξ ∈ T(p,u)T M and (x,U ) be a curve
in T M that passes through (p,u) at time 0 at speed ξ. Then we define the vertical and
horizontal projections

vp(p,u) : T(p,u)T M → Tp M , ξ 7→ ξV :=∇x′(0)U ,

hp(p,u) : T(p,u)T M → Tp M , ξ 7→ ξH := x ′(0).

The horizontal and vertical projections live in the tangent bundle T M and are not to
be confused with the horizontal and vertical parts which live in the double tangent
bundle T T M and will be denoted by ξH , ξV . Furthermore, let us point out that the
horizontal projection is simply the differential of the natural projection T M → M ,
and that according to these definitions, the Sasaki metric ([9], [10]) can be written

g S
(p,u)(ξ,η) = 〈

ξH , ηH
〉+〈

ξV , ηV
〉

,

where 〈·, ·〉 is the Riemannian metric on M . Now we can define the metric that we put
on T M . Let us consider h ∈ T M and ξ,η ∈ ThT M . We define

G̃h
(
ξ,η

) = 〈
ξ(0)H , η(0)H

〉 +
∫ 1

0

〈
ξ(t )V , η(t )V

〉
dt , (3)

where ξ(t )H = hp(ξ(t )) and ξ(t )V = vp(ξ(t )) are the horizontal and vertical projec-
tions of ξ(t ) ∈ T T M for all t . Then we have the following result.

Proposition 1. The pullback of the metric G̃ by the square root velocity function R is
given by

Gc (h,k) = 〈h(0),k(0)〉+
∫ 〈∇s h⊥,∇s k⊥〉+ 1

4

〈
∇s hË,∇s kË

〉
ds, (4)

for any curve c ∈ M and vectors h,k ∈ TcM , where we integrate according to arc
length, ∇s h = 1

‖c ′‖∇c ′h is the covariant derivative of h according to arc length, and

∇s hË = 〈∇s h, v, v〉v and ∇s h⊥ = ∇s h −∇s hË are its tangential and normal compo-
nents respectively, if v = 1

‖c ′‖c ′ is the unit tangent vector field along c in M.



Remark 1. In the case of curves in a flat space, G is the first-order Sobolev metric (2),
studied in [11], with an added term involving the origins. This extra term guaranties
that the induced distance is always greater than the distance between the starting
points of the curves in M .

Proof. For any c ∈M , and h,k ∈ TcM , the metric G is defined by

Gc (h,k) = G̃R(c) (Tc R(h),Tc R(k)) .

For any t ∈ [0,1], we have Tc R(h)(t )H = h(t ) and Tc R(h)V =∇hR(c)(t ). To prove this
proposition, we just need to compute the latter. Let a 7→C (a, ·) be a curve in M such
that C (0, ·) = c et ∂aC (0, ·) = h . Then

∇hR(c)(t ) = 1

‖c ′‖1/2
∇hc ′+h

(∥∥c ′
∥∥−1/2

)
c ′

= 1

‖∂t C‖1/2
∇∂aC∂t C +∂a 〈∂t C , ∂t C 〉−1/4∂t C

= 1

‖∂t C‖1/2
∇∂t C∂aC − 1

2
〈∂t C , ∂t C 〉−5/4 〈∇a∂t C , ∂t C 〉 ∂t C

= ∥∥c ′
∥∥1/2

(
(∇s h)⊥+ 1

2
〈∇s h , v〉v

)
,

where in the last step we use again the inversion ∇∂a∂t C =∇∂t C∂aC .

3 Fiber bundle structures

Principal bundle over the shape space We already know that we have a formal prin-
cipal bundle structure over the shape space

π : M = Imm([0,1], M) →S =M /Diff+([0,1]).

which induces a decomposition T M = V M
⊥⊕ HM . Just as in the planar case, the

fact that the square root velocity function R verifies the equivariance property

R(c ◦φ) =
√
φ′ (R(c)◦φ)

for all c ∈ M , h,k ∈ TcM and φ ∈ Diff+([0,1]), guaranties that the integral part of
G is reparameterization invariant. Remembering that the reparameterizations φ ∈
Diff+([0,1]) preserve the origins of the curves, we notice that G is constant along the
fibers, as expressed in equation (1), and so there exists a Riemannian metric Ĝ on
the shape space S such that π is (formally) a Riemannian submersion from (M ,G)
to (S ,Ĝ)

Gc (hH ,k H ) = Ĝπ(c) (Tcπ(h),Tcπ(k)) ,

where hH and k H are the horizontal parts of h and k respectively.



Fiber bundle over the starting points The special role that plays the starting point
in the metric G induces another formal fiber bundle structure, where the base space
is the manifold M , seen as the set of starting points of the curves, and the fibers are
the set of curves with the same origin. The projection is then

π(∗) : M → M , c 7→ c(0).

It induces another decomposition of the tangent bundle in vertical and horizontal
bundles

V (∗)
c M = kerTπ(∗) = {h ∈ TcM |h(0) = 0} ,

H (∗)
c M = (

V (∗)
c M

)⊥G .

Proposition 2. We have the usual decomposition T M = V (∗)M
⊥⊕ H (∗)M , the hori-

zontal bundle H (∗)
c M consists of parallel vector fields along c, and π(∗) is (formally) a

Riemannian submersion for (M ,G) and (M ,〈·, ·〉).

Proof. Let h be a tangent vector. Consider h0 the parallel vector field along c with ini-
tial value h0(0) = h(0). It is a horizontal vector, since its vanishing covariant deriva-
tive along c assures that for any vertical vector l we have Gc (h0, l ) = 0. The difference
h̃ = h −h0 between those two horizontal vectors has initial value 0 and so it is a ver-
tical vector, which gives a decomposition of h into a horizontal vector and a vertical
vector. The definition of H (∗)M as the orthogonal complement of V (∗)M guaranties
that their sum is direct. Now if k is another tangent vector, then the scalar product
between their horizontal parts is

Gc (hH ,k H ) = 〈
hH (0) , k H (0)

〉
c(0) = 〈h(0) , k(0)〉c(0) =

〈
Tcπ

(∗)(hH ) , Tcπ
(∗)(k H )

〉
π(∗) ,

and this completes the proof.

4 Induced distance on the space of curves

Here we will give an expression for the geodesic distance induced by the metric G .
Let us consider two curves c0,c1 ∈ M , and a path of curves a 7→ c(a, ·) linking them
in M

c(0, t ) = c0(t ), c(1, t ) = c1(t ),

for all t ∈ [0,1]. We denote by f (a, ·) = R (c(a, ·)) the image of this path of curves by
the SRVF R. Note that f is a vector field along the surface c in M . Let now f̃ be the
raising of f in the tangent plane Tc(0,0)M in the following way

f̃ (a, t ) = P a,0
c(·,0) ◦P t ,0

c(a,·)
(

f (a, t )
)

,

where we denote by P s,t
γ : Tγ(s)M → Tγ(t )M the parallel transport along a curve γ

from γ(s) to γ(t ). Notice that f̃ is a surface in a vector space, as illustrated in Figure
1. Lastly, we introduce a vector field (b, s) 7→ωa,t (b, s) in M , which parallel translates



f (a, t ) along c(a, ·) to its origin, then along c(·,0) and back down again, as shown in
Figure 1. More precisely

ωa,t (b, s) = P 0,s
c(b,·) ◦P a,b

c(·,0) ◦P t ,0
c(a,·)

(
f (a, t )

)
for all b, s. That way the quantity ∇∂a cω

a,t measures the holonomy along the rect-
angle of infinitesimal width shown in Figure 1. For convenience, we will adopt the
following notations for a vector field ω along a surface a 7→ c(a, t )

∇aω :=∇∂a cω, ∇tω :=∇∂t cω.

We can now formulate our result.

Proposition 3. With the above notations, the geodesic distance induced by the Rie-
mannian metric G between two curves c0 and c1 on the space M = Imm([0,1], M) of
parameterized curves is given by

dist(c0,c1) = inf
c

∫ 1

0

√∥∥γ′(a)
∥∥2 +

∫ 1

0

∥∥∇a f (a, t )
∥∥2 dt da,

where γ = c(·,0) is the curve linking the origins, f = R(c) and the norm is the one
associated to the Riemannian metric on M. It can also be written

dist(c0,c1) = inf
c

∫ 1

0

√∥∥γ′(a)
∥∥2 +

∫ 1

0

∥∥∂a f̃ (a, t )+Ω(a, t )
∥∥2

dt da, (5)

where the curvature termΩ is given by

Ω(a, t ) = P a,0
c(·,0) ◦P t ,0

c(a,·)
(∇aω

a,t (a, t )
)

= P a,0
c(·,0) ◦P t ,0

c(a,·)

(∫ t

0
P s,t

c(a,·)
(
R(∂s c,∂ac)P t ,s

c(a,·) f (a, t )
)

ds

)
,

if R denotes the curvature tensor of the manifold M.

Remark 2. Our original motivation for this work was to find a geodesic distance (that
is, a distance induced by a Riemannian metric) that resembled the product distance
introduced in [5]. In the first term under the square root of expression (5) we can
see the velocity vector of the curve γ linking the two origins, and in the second the
velocity vector of the curve f̃ linking the TSRVF-images of the curves – Transported
Square Root Velocity Function, as introduced by Su et al. in [12]. However there is
also a curvature term Ω which, as previously mentionned, measures the holonomy
along the rectangle of infinitesimal width shown in Figure 1. If instead we equip the
tangent bundle TM with the metric

G̃h(ξ,ξ) = ‖ξh(0)‖2 +
∫ 1

0

∥∥∥∥ξv (t )−
∫ t

0
P s,t

c

(
R(c ′,ξh)P t ,s

c h(t )
)

ds

∥∥∥∥2

dt ,

for h ∈ T M and ξ,η ∈ ThT M , then the curvature term Ω vanishes and the geodesic
distance on M becomes

dist(c0,c1) = inf
c

∫ 1

0

√∥∥γ′(a)
∥∥2 +∥∥∂a f̃ (a, ·)∥∥2

da, (6)



where the norm of the second term under the square root is the L2-norm, and which
corresponds exactly to the geodesic distance associated to the metric on the space
C=∪p∈M L2([0,1],Tp M) introduced by Zhang et al. in [14]. Indeed, if

q(a, t ) = P t ,0
c(a,·)

(
f (a, t )

)= P 0,a
c(·,0)

(
f̃ (a, t )

)
,

then a 7→ (γ(a), q(a, ·)) is a curve in C, and the squared norm of its tangent vector
according to the metric of [14] is given by

∥∥γ′(a)
∥∥2 +

∫ 1

0

∥∥∇a q(a, t )
∥∥2 dt

= ∥∥γ′(a)
∥∥2 +

∫ 1

0

∥∥∥∇a

(
P 0,a

c(·,0) f̃ (a, t )
)∥∥∥2

dt

= ∥∥γ′(a)
∥∥2 +

∫ 1

0

∥∥∂a f̃ (a, t )
∥∥2

dt .

The difference between the two distances (5) and (6) resides in the curvature termΩ,
which translates the fact that in the first one, we compute the distance in the mani-
fold, whereas in the second, it is computed in the tangent space to one of the origins
of the curves. Therefore, the first one takes more directly into account the "relief"
of the manifold between the two curves under comparison. For example, if there is a
"bump" between two curves in an otherwise relatively flat space, the second distance
(6) might not see it, whereas the first one (5) will thanks to the curvature term.

Remark 3. Let us briefly consider the flat case : if the manifold M is flat, the two dis-
tances (5) and (6) coincide. If two curves c0 and c1 in a flat space have the same start-
ing point p, the first summand under the square root vanishes and the distance be-
comes the L2-distance between the two image curves R(c0) and R(c1). If two curves
in a flat space differ only by a translation, then the distance is simply the distance
between their origins.

Proof. Since G is defined by pullback of G̃ by the SRVF R, we know that the lengths
of c in M and of f = R(c) in TM are equal and so that

dist(c0,c1) = inf
c

∫ 1

0

√
G̃

(
∂a f (a, ·),∂a f (a, ·)) da,

with

G̃
(
∂a f (a, ·),∂a f (a, ·))= ‖∂ac(a,0)‖2 +

∫ 1

0

∥∥∇a f (a, t )
∥∥2 dt .

Now let us fix t ∈ [0,1]. Then a 7→ P t ,0
c(a,·)

(
f (a, t )

)
is a vector field along c(·,0), and so

∇a

(
P t ,0

c(a,·) f (a, t )
)
= P 0,a

c(·,0)

(
∂

∂a
P a,0

c(·,0) ◦P t ,0
c(a,·)

(
f (a, t )

))= P 0,a
c(·,0)

(
∂a f̃ (a, t )

)
.

We consider the vector field ν along the surface (a, s) 7→ c(a, s) that is parallel along
all curves c(a, ·) and takes value ν(a, t ) = f (a, t ) in s = t for any a ∈ [0,1], that is

ν(a, s) = P t ,s
c(a,·)

(
f (a, t )

)
,



Fig. 1. Illustration of the distance between two curves c0 and c1 in the space of curves M

for all a ∈ [0,1] and s ∈ [0,1]. That way we know that

∇aν(a, t ) = ∇a f (a, t ),

∇aν(a,0) = P 0,a
c(·,0)

(
∂a f̃ (a, t )

)
,

∇sν(a, s) = 0,

for all a, s ∈ [0,1]. Then we can express its covariant derivative in the following way

∇aν(a, t ) = P 0,t
c(a,·) (∇aν(a,0))+

∫ t

0
P s,t

c(a,·) (∇s∇aν(a, s))d s

= P 0,t
c(a,·) ◦P 0,a

c(·,0)

(
∂a f̃ (a, t )

)+∫ t

0
P s,t

c(a,·)
(
R(∂s c,∂ac)P t ,s

c(a,·) f (a, t )
)

ds. (7)

Now let us fix a ∈ [0,1] as well. Notice that the vector field ωa,t defined above verifies

ωa,t (a, t ) = f (a, t ),

∇sω
a,t (b, s) = 0,

∇bω
a,t (b,0) = 0,

for all b, s ∈ [0,1]. Note that unlike ν, we do not have ∇aω
a,t (a, t ) =∇a f (a, t ) because

ωa,t (b, t ) = f (b, t ) is only true for b = a. It is easy to verify that the last term of equa-
tion (7) is precisely the covariant derivative of the vector field ωa,t

∇aω
a,t (a, t ) =

∫ t

0
P s,t

c(a,·)
(
R(∂s c,∂ac)P t ,s

c(a,·) f (a, t )
)

ds,

since for any s ∈ [0,1], ωa,t (a, s) = P t ,s
c(a,·) f (a, t ), and finally by composing by P a,0

c(·,0) ◦
P t ,0

c(a,·), we obtain the second expression (5), which completes the proof.



5 Geodesic equation on T M

In the same way as in [14], we can obtain the geodesic equation associated to our
metric G̃ on T M by considering the energy of a variation b 7→ (

ĉ(b, ·, ·), ĥ(b, ·, ·)) of a
curve a 7→ (c(a, ·),h(a, ·)) of T M

E(b) =
∫ 1

0
〈 ĉa(b, a,0) , ĉa(b, a,0)〉 da +

∫ 1

0

∫ 1

0

〈∇a ĥ(b, a, t ) , ∇a ĥ(b, a, t )
〉

dt da,

where we use the notations ca = ∂ac and ∇ah =∇xa h. The considered variation (ĉ, ĥ)
takes value (c,h) in b = 0 and leaves the end points c(0, ·), c(1, ·) unchanged. We ob-
tain the geodesic equation in T M by writing that the derivative in b = 0 of the energy
of this variation vanishes whatever the choice of (ĉ, ĥ), which gives∫ 1

0
〈∇aca(a,0) , ĉb(0, a,0)〉da

+
∫ 1

0

∫ 1

0
〈 R(h,∇ah)ca(a, t ) , ĉb(0, a, t )〉+〈∇a∇ah(a, t ) , ∇b ĥ(0, a, t )

〉
dt da = 0.

The geodesic equation in R(M ) is obtained by putting h = R(c) = ctp‖ct ‖ . Unfortu-

nately we must distinguish the two spaces since R is not bijective from M to T M .

Remark 4. Let us just point out that if we consider instead a third metric

G̃h
(
ξ,η

) = ∫ 1

0

〈
ξ(t )H , η(t )H

〉 ‖h(t )‖2 + 〈
ξ(t )V , η(t )V

〉
dt ,

then the derivative in b = 0 of the energy of the variation (ĉ, ĥ) is given by

E ′(0) =−2
∫ 1

0

∫ 1

0

〈 ∥∥h
∥∥2∇aca + 2〈∇ah,h〉ca + R(h,∇ah)ca , ĉb(0)

〉
+ 〈∇a∇ah− ∥∥ca

∥∥2h , ∇b ĥ(0)
〉

dt da,

and since the two tangent vectors ĉb(0), ∇b ĥ(0) can be chosen independently, we get
the following geodesic equations in T M{

‖h‖2∇aca + 2〈∇ah,h〉ca + R (h,∇ah)ca = 0,

∇a∇ah = ‖xa‖2 h,

where all terms are considered at any point (a, t ) ∈ [0,1]2. In R(M ) however, we only
have an integral form, for we cannot choose ĉb(0) and ∇bR(ĉ(0)) independantly.

6 Conclusion

In the same way that the first-order Sobolev metric (2) on the space of plane curves
can be obtained as the pullback of the L2-metric by the square root velocity function
([11]), our metric G can be obtained as the pullback of a metric G̃ on the tangent



bundle TM derived from the Sasaki metric, by the same SRVF. As such it is repa-
rameterization invariant, and induces a Riemannian metric Ĝ on the shape space S

for which the fiber bundle projection is formally a Riemannian submersion. On the
other hand, the special role that G gives to the starting points of the curves induces
another formal fiber bundle structure, this time over the manifold M seen as the set
of starting points of the curves, for which the projection is formally also a Rieman-
nian submersion. In the flat case, the geodesic distance induced by G is a product
metric, and when the manifold M is not flat, there is an added curvature term. We
can modify the metric G̃ so that this curvature term in the distance induced by its
pullback G disappears, but the first option seems preferable since the induced dis-
tance takes into account a greater amount of information on the geometry of the
manifold.
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