Groups with infinitely many ends acting analytically on the circle - Archive ouverte HAL
Article Dans Une Revue Journal of topology Année : 2019

Groups with infinitely many ends acting analytically on the circle

Résumé

This article is inspired by two milestones in the study of non-minimal group actions on the circle: Duminy's theorem about the number of ends of semi-exceptional leaves, and Ghys' freeness result in real-analytic regularity. Our first result concerns groups of real-analytic diffeomorphisms with infinitely many ends: if the action is non expanding, then the group is virtually free. The second result is a Duminy type theorem for minimal codimension-one foliations: either non-expandable leaves have infinitely many ends, or the holonomy pseudogroup preserves a projective structure.
Fichier principal
Vignette du fichier
AFKMMNT Infinitely many ends-rev2.pdf (939.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01178641 , version 1 (17-07-2017)

Identifiants

Citer

Sébastien Alvarez, Dmitry Filimonov, Victor A. Kleptsyn, Dominique Malicet, Carlos Meniño, et al.. Groups with infinitely many ends acting analytically on the circle. Journal of topology, 2019, 12 (4), pp.1315-1367. ⟨10.1112/topo.12118⟩. ⟨hal-01178641⟩
348 Consultations
217 Téléchargements

Altmetric

Partager

More