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Groups with infinitely many ends acting analytically on the circle

Sébastien Alvarez Dmitry Filimonov Victor Kleptsyn
Dominique Malicet Carlos Meniño Andrés Navas

Michele Triestino

Dedié à Étienne Ghys à l’occasion de son 60ème anniversaire

Abstract
This article is inspired by two milestones in the study of non-minimal group actions on the

circle: Duminy’s theorem about the number of ends of semi-exceptional leaves, and Ghys’ freeness
result in real-analytic regularity. Our first result concerns groups of real-analytic diffeomorphisms
with infinitely many ends: if the action is non expanding, then the group is virtually free. The
second result is a Duminy type theorem for minimal codimension-one foliations: either non-
expandable leaves have infinitely many ends, or the holonomy pseudogroup preserves a projective
structure.
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1 Introduction

1.1 Foreword and results

The projective linear group PSL(2,R) is the main source of inspiration for understanding groups
of circle diffeomorphisms. Although not as huge as Diff+(S1) – it is only a three-dimensional Lie
group versus an infinite dimensional group –, it is a good model to study several important aspects
of subgroups of Diff+(S1).

To begin, recall that PSL(2,R) naturally acts on the circle S1 viewed either as the projective
real line RP1 or as the boundary of the hyperbolic plane. This action is clearly real analytic, thus
we can see PSL(2,R) as a subgroup of the group Diffω+(S1) of orientation-preserving real-analytic
circle diffeomorphisms.

Several works have already described “non-discrete” (more precisely, non locally discrete) sub-
groups of Diffω+(S1), if not thoroughly, at least in a very satisfactory way (see Ghys [23], Shcherbakov
et al. [16], Nakai [33], Loray and Rebelo [30,37,38], Eskif and Rebelo [17], etc.). Morally, they resem-
ble non-discrete subgroups in PSL(2,R), in the sense that their dynamics approximate continuous
dynamics. We will be more precise later.

A decade ago or so, some of the authors, in collaboration with Bertrand Deroin, started a
systematic study of locally discrete groups of Diffω+(S1) [8,10,11,18,19]. They introduced an auxiliary
property, named (?) (and (Λ?), but we do not make a distinction here), under which groups behave
roughly like Fuchsian groups, i.e. discrete subgroups of PSL(2,R). Informally speaking, property (?)
requires that the action is non-uniformly hyperbolic: points at which hyperbolicity is lost must be
parabolic fixed points (or more generally the fixed point of some element, with derivative 1). This is
indeed the case for non-elementary Fuchsian groups.

Starting from this, a relevant part of the work aims to show that property (?) is always satisfied.
Conjecturally, it should be satisfied even in the lowest regularity setting where one disposes of control
of affine distortion, namely C2. However, the attention should be focused first on real-analytic
actions, where arguments are often less technical.

In order to ensure property (?), one relates the dynamics with the algebraic structure of the
group. So far the program proceeds by distinction of the number of ends of the group. Extending
the previous work [11] on virtually free groups (i.e. groups containing free subgroups of finite index),
our first main result proves that property (?) holds for groups with infinitely many ends:

Theorem A. Let G be a finitely generated, locally discrete subgroup of Diffω+(S1). If G has infinitely
many ends, then it satisfies property (?), and it is virtually free.

Our second result goes in the reverse direction: property (?) determines the structure of the group.
As we already mentioned, classical examples of locally discrete groups with property (?) are Fuchsian
groups. Similarly, one can consider finite central extensions of Fuchsian groups (i.e. discrete subgroups
of a k-fold cover PSL(k)(2,R) of PSL(2,R)). A discrete group Γ ⊂ PSL(k)(2,R) is cocompact if the
quotient PSL(k)(2,R)/Γ is compact. Cocompact discrete groups have only one end.

Theorem B. Let G be a finitely generated, locally discrete subgroup of Diffω+(S1) satisfying prop-
erty (?). Then

• either G is Cω-conjugate to a finite central extension of a cocompact Fuchsian group

• or it is virtually free.

An exhaustive description of virtually free, locally discrete groups of Diffω+(S1) will be the object
of a forthcoming work [1].
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1.2 Dynamics: Basic definitions and preliminaries

Locally discrete groups of real-analytic circle diffeomorphisms – If a group G acts (contin-
uously) on the circle S1 and there is no finite orbit, then the group admits a unique minimal invariant
compact set, which can be the whole circle or a Cantor set. The most interesting dynamics takes place
on this minimal set. For example, only minimal sets “survive” under topological semi-conjugacies.

Because of the minimality of the action on the minimal set Λ, the local dynamics around a point
x ∈ Λ is essentially the same as the local dynamics around any other point y ∈ Λ. Roughly speaking,
the dynamics of G on Λ is encoded in the restriction of the action of G to any open interval I
intersecting Λ.
Definition 1.1. A group G ⊂ Diffω+(S1) is locally discrete (more precisely, C1 locally discrete) if
for any interval I ⊂ S1 intersecting a minimal set, the restriction of the identity to I is isolated in
the C1 topology among the set of restrictions to I of the diffeomorphisms in G.

The previous definition makes sense also for subgroups of Diff1
+(S1). However, to avoid discussing

different classes of regularity, we restrict to Diffω+(S1). The huge difference between Cω and lower
regularity is the following:
Theorem 1.2 (see Proposition 3.7 of [32]). Let G ⊂ Diffω+(S1) be a finitely generated, locally discrete
subgroup. Then the stabilizer in G of every point is either trivial or infinite cyclic.

The next corollary essentially describes locally discrete groups with finite orbits.
Corollary 1.3. Let G ⊂ Diffω+(S1) be a finitely generated, locally discrete subgroup with a finite
orbit. Then G is either cyclic or contains an index-2 subgroup which is the direct product of an
infinite cyclic group with a finite cyclic group.
Remark 1.4. Notice that the index-2 subgroup below arises when a rotation conjugates an element
with fixed points into its inverse (as it is the case of involution x→−1/x with respect to the
hyperbolic Möbius transformation x→λx, with λ 6= 1, both viewed as maps of the circle S1 ∼ RP1).

Theorem 1.2 is a consequence of a well-known result due to Hector, and we refer to it as “Hector’s
lemma” (see [21, Théorème 2.9] and [23,34]). Generalizing Hector’s lemma to lower regularity is a
longstanding major problem in codimension-one foliations [12, pp. 448–449]. It is also the major
reason why our results hold in this wide generality only for subgroups of Diffω+(S1).

Non locally discrete groups of analytic circle diffeomorphisms – If a subgroup G ⊂
Diffω+(S1) is locally discrete, then it is also discrete (with respect to the C1 topology). As a matter
of fact, there is no deep reason for privileging locally discreteness above discreteness: we believe that
the two notions coincide, but this would rather be a consequence of our aimed classification. Indeed,
appropriate dynamical tools are known only when working with local (non-)discreteness.

As we mentioned at the beginning, non locally discrete groups have been studied in several
works, mainly by Shcherbakov, Nakai, Loray and Rebelo. The fundamental tool, which goes back to
[16,30, 33], is the following result that establishes the existence of local flows in the local closure of
the group. We state it in the form of [11, Proposition 2.8]:
Proposition 1.5. Let I be an interval on which nontrivial real-analytic diffeomorphisms fk ∈
Diffω(I,S1) are defined. Suppose that the sequence fk converges to the identity in the C1 topology
on I, and let f be another Cω diffeomorphism having a hyperbolic fixed point on I. Then there exists
a (local) C1 change of coordinates φ : I −→ [−1, 2] after which the pseudogroup G generated by the
fk’s and f contains in its C1([0, 1], [−1, 2])-closure a (local) translation sub-pseudogroup:{

φgφ−1|[0,1] | g ∈ G
}
⊃
{
x 7→ x+ s | s ∈ [−1, 1]

}
.
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Existence of elements with hyperbolic fixed points is often guaranteed, as the classical Sacksteder’s
theorem claims ([39], see also [9,15,35]). We state a more general version (in class C1) due to Deroin,
Kleptsyn and Navas, inspired by a similar result of Ghys in the C2 context.

Theorem 1.6. Let G be a finitely generated group of C1 circle diffeomorphisms. If G admits no
invariant probability measure on S1, then it contains an element that has a hyperbolic fixed point in
the minimal invariant set of G.

Observe that a group with an invariant measure either is semi-conjugate to a group of rotations
or has a finite orbit. Joining Proposition 1.5 and Sacksteder’s theorem together, we have that if a
finitely generated group G ⊂ Diffω+(S1) acts minimally with no invariant measure and is non locally
discrete, then it has local vector flows in its local closure.

Non-expandable points – The existence of local flows in the closure of a group of circle
diffeomorphisms yields rich dynamics. For instance, the action must be minimal and Lebesgue
ergodic. If, besides, there is no invariant probability measure, one deduces from Sacksteder’s theorem
that the action must be expanding, in the following sense:

Definition 1.7. A point x ∈ S1 is non expandable for the action of a groupG of circle diffeomorphisms
if for every g ∈ G, the derivative of g at x is not greater than 1. We denote by NE = NE(G) the
set of non-expandable points of G. The action of a group of circle diffeomorphisms is expanding if
NE = ∅.

Since we have NE = {x | g′(x) ≤ 1 for every g ∈ G} =
⋂
g∈G {x | g′(x) ≤ 1} , the set of non-

expandable points is always closed. Notice that one can define the set of non-expandable points for
any group of C1 circle diffeomorphisms. However, it is important to point out that, a priori, the
definition does not well behave under C1 conjugacy: only the property NE = ∅ is invariant under C1

conjugacy. The problem is that the notion of non-expandable points is not a dynamical one. The
following definition, introduced in [9], forces a conjugacy-invariant condition.

Definition 1.8 (Property (?) – Cω case). Let G ⊂ Diffω+(S1) be a group with no finite orbit, and
let Λ be its minimal invariant set. The group G has property (?) if for every x ∈ NE ∩ Λ there is
g ∈ G \ {id} such that x is a fixed point of g.

Property (?) makes sense even for C1 actions. However it turns to be a useful notion only when
working with actions that are at least of class C2 (because control of distortion is needed). In most
issues, there is no relevant difference between C2 and Cω actions with property (?). However, the
definition of property (?) in class C2 is slightly more complicated, as one has to take into account
that there could be elements that are the identity on some interval.

Definition 1.9 (Property (?) – C2 case). Let G ⊂ Diff2
+(S1) be a group with no finite orbit, and

let Λ be its minimal invariant set. The group G has property (?) if for every x ∈ NE∩Λ there are g+
and g− in G such that x is an isolated fixed point in Λ from the right (resp. from the left) for g+|Λ
(resp. g−|Λ).

Property (?) entails several strong properties for the dynamics of the group action. For a detailed
discussion, the reader may consult [9] or [35, § 3.5]. Here we collect the results that are relevant to
our purposes. First of all, if NE 6= ∅, then the group is locally discrete. Secondly, the set NE ∩ Λ
intersects only finitely many orbits (also, in the case where an exceptional minimal set arises, there
are only finitely many orbits of connected components of the complement S1 \Λ). This can be seen as
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a consequence of the work [10] where an expansion procedure was introduced, and later improved by
Filimonov and Kleptsyn in [18]. In this latter work the authors show that, if NE 6= ∅, the dynamics
on the minimal set can be encoded by a Markovian dynamics (see Theorem 3.4 below). We will give
a more precise account later in § 3.3, as this fact is one fundamental ingredient for the proof of
Theorem B, as well as for its generalization to lower regularity, namely Theorem C further on.
Example 1.10. Morally, when property (?) is satisfied, orbits of non-expandable points should be
geometrically interpreted as cusps. Actually, this is the case for the action of non-uniform lattices Γ
in PSL(2,R), that is subgroups for which the quotient H2/Γ is not compact but has finite volume.
The most classical examples are PSL(2,Z) and its finite index free subgroups like

Γ =
〈[

1 2
0 1

]
,

[
1 0
2 1

]〉

(the quotient H2/Γ is a sphere with three cusps). In these cases, the orbit of the set of non-expandable
points is made of the rational numbers together with the point at infinity in RP1 ∼= R∪ {∞}. In the
quotient space H2/Γ, these points coincide with the cusps.

Although property (?) is always verified by non locally discrete groups, whether it holds or not
is definitively a challenging question for locally discrete groups. In some sense, as we plan to clarify
in future works, locally discrete groups with property (?) present a dynamics strongly related to
geometry: roughly, the dynamics should be described by combining elementary “Fuchsian” pieces.

It is strongly believed that property (?) holds for any (finitely generated) subgroup of Diffω+(S1).
This has already been verified for certain classes of groups: virtually free groups [11] and finitely
presented one-ended groups of bounded torsion [19]. Theorem A enlarges this list. We will describe
the state of the art on this point later.

1.3 Groups: Basic definitions and preliminaries

Definition 1.11. Let X be a connected topological space. Let (Kn)n∈N be an increasing sequence
of compact subsets Kn ⊂ X, such that the union of their interiors covers X. An end of X is a
decreasing sequence

C1 ⊃ C2 ⊃ . . . ⊃ Cn ⊃ . . . ,

where Cn is a connected component of X \Kn. We denote by e(X) the space of ends of X; it does
not depend on the choice of (Kn).

Note the cardinal of e(X), called the number of ends of X, is the least upper bound, possibly
infinite, for the number of unbounded connected components of the complementary sets X \K,
where K runs through the compact subsets of X.

The space of ends carries a natural topology: an open set V in X induces an open set in e(X)
given by the set of sequences (Cn) so that Cn ⊂ V for all but finitely many n’s. Also the topology
does not depend on the choice of (Kn). For nice topological spaces (connected and locally connected)
the space of ends defines a compactification of X:

Definition 1.12. A sequence of points (xn) in X goes to an end if it eventually goes outside of
every compact set, that is, for every compact set K ⊂ X, there exists n0 such that xn /∈ K for all
n ≥ n0.

If G is a group generated by a finite set G, we define the space of ends e(G) of G to be the space
of ends of the Cayley graph of G relative to G. This is the graph whose vertices are the elements
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of G, and two elements g, h ∈ G are joined by an edge if g−1h ∈ G. The graph metric induces the
length metric in G given by the following expression:

dG(g, h) = min{` | g−1h = s1 · · · s`, sj ∈ G ∪ G−1}.

The length of an element g ∈ G is defined as ‖g‖ = dG(id, g).
It is a classical fact [3, § 8.30] that the space of ends, and hence the number of ends, of a

group does not depend on the choice of the finite generating set (this easily follows from the fact
that Cayley graphs associated with different finite generating systems are bilipschitz equivalent).
Moreover, the number of ends does not change when passing to finite extensions or finite-index
subgroups. Furthermore, finitely generated groups can only have 0, 1, 2 or infinitely many ends.
Groups with 0 or 2 ends are not of particular interest: they are respectively finite or virtually infinite
cyclic, i.e. they contain Z as a finite index subgroup (we refer to [3, § 8.32] for further details).
Although they represent a broader class, groups with infinitely many ends may also be algebraically
characterized, according to the celebrated Stallings’ theorem. Before stating it, we recall two basic
operations on groups.

Definition 1.13. Let G1 and G2 be two groups, and denote by relGi the set of relations in Gi.
Let Z be a group which embeds in both G1 and G2 via morphisms φi : Z ↪→ Gi, i = 1, 2. The
amalgamated product G1 ∗Z G2 of G1 and G2 over the group Z is defined by the presentation

〈G1, G2 | relG1, relG2 and φ1(z) = φ2(z) for every z ∈ Z〉.

Amalgamated products arise, for example, in the classical van Kampen theorem. It is clear that if
G1 and G2 are finitely generated, then any amalgamated product G1 ∗Z G2 is also finitely generated.
Conversely, if Z and G1 ∗Z G2 are finitely generated, then G1 and G2 are also finitely generated.

Definition 1.14. Let H be a group and Z another group that embeds in two distinct ways into
H via morphisms φi : Z ↪→ H, i = 1, 2. The HNN extension H∗Z of H over Z is defined by the
presentation

〈H,σ | relH, and φ1(z) = σφ2(z)σ−1 for every z ∈ Z〉.

The generator σ is usually called the stable letter of the extension.

The most basic examples are the Baumslag-Solitar groups BS(m,n) = 〈t, σ | tn = σtmσ−1〉,
which correspond to HNN extensions of the type Z∗Z (here the embeddings φi : Z ↪→ Z are the
multiplications by m and n, respectively).

From an algebraic point of view, an HNN extension H∗Z is isomorphic to the semi-direct product
of Z (generated by σ) and a bi-infinite chain of amalgamated products of copies of H. As before, if
H is finitely generated, then any HNN extension H∗Z is also finitely generated. Conversely, if Z and
H∗Z are finitely generated, then H is also finitely generated. We refer the reader to [2, 40] for more
details.

Theorem 1.15 (Stallings). Let G be a finitely generated group with infinitely many ends. Then G
is either an amalgamated product G1 ∗Z G2 over a finite group Z (different from G1 and G2) or an
HNN extension H∗Z over a finite group Z (different from H).

Given a finitely generated group G with infinitely many ends, we shall call Stallings’ decomposition
any possible decomposition of G as an amalgamated product or as an HNN extension over a finite
group. Typical examples of groups with infinitely many ends are non-abelian (virtually) free groups.

In the second part of this work we study the geometry of orbits. To this extent, we recall the
notion of Schreier graph, which is nothing but the generalization of Cayley graphs to group actions.
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Definition 1.16. Let G be a finitely generated group acting on a space, let G be a finite generating
system and X an orbit for the action. The Schreier graph of the orbit X, denoted by Sch(X,G), is
the graph whose vertices are the elements of X, and two vertices x, y ∈ X are joined by an edge if
there exists s ∈ G such that s(x) = y. The graph metric on X is induced by the length metric on G:

dXG (x, y) = min {dG(id, g) | g(x) = y} .

As for Cayley graphs, the number of ends of Schreier graphs does not depend on the choice of
the finite generating set. Remark, however, that a Schreier graph might not have the same number
of ends as the Cayley graph: for example, Thompson’s group T is one-ended, it acts on the circle
by C∞ diffeomorphisms [20], and there are Schreier graphs associated with this action that have
infinitely many ends (as Duminy’s theorem below guarantees).

Finally, we introduce a graph structure for the grupoid of germs Gx0 defined at a point x0. Fix
a generating system G for G. Recall that two diffeomorphisms f and g define the same germ at a
point x0 if there exists a neighbourhood U of x0 such that the restrictions of f and g to U coincide.
In the following, we identify a germ with any diffeomorphism representing it. The germs usually do
not define a group, but rather a grupoid. For our purposes, it is enough to consider Gx0 simply as a
metric space as follows: Gx0 is formed by all the germs defined at x0 and equipped with the distance

dG,x0(g, h) = min
{
` ∈ N

∣∣∣ g−1h|U = s1 · · · s`|U , sj ∈ G ∪ G−1, for some neighbourhood U 3 x0
}
.

Remark 1.17. The grupoid of germs Gx0 is a covering of the Schreier graph of X = G · x0, defined
by the natural map g ∈ Gx0 7→ g(x0) ∈ X. In foliation theory, this is called the holonomy covering
of X.

1.4 Background and perspective

Let us return to the discussion of our results, putting them in a neater context.

A previous result – Virtually free groups are the typical examples of groups with infinitely
many ends. In [11] Deroin, Kleptsyn and Navas succeeded in showing that virtually free groups have
property (?):

Theorem 1.18 (Deroin, Kleptsyn, Navas). Let G ⊂ Diffω+(S1) be a virtually free group acting
minimally on the circle. Then G has property (?).

Hence, Theorem A extends the main result of [11]. In fact, the proof of Theorem A relies on an
interplay between the proof of Theorem 1.18 and Stallings’ theorem, following ideas of Hector and
Ghys [21] that we sketch in § 2.1.

Duminy’s and Ghys’ theorems – Our second result, Theorem B, also shows that minimal
actions with non-expandable points are very close to actions with an exceptional minimal set. The
orbit of a non-expandable point plays the role of the gaps associated with an exceptional minimal
set. In this analogy, the non-expandable point is identified with a maximal gap which cannot be
expanded.
Example 1.19. If we think on classical Fuchsian groups, actions with an exceptional minimal set
(usually called Fuchsian groups of the second kind) are semi-conjugate to minimal actions (Fuchsian
groups of the first kind). Geometrically, the semi-conjugacy is realized by contracting all boundary
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components of a hyperbolic surface H2/Γ0 of infinite volume to cusps, so to obtain a new hyperbolic
surface H2/Γ of finite volume. Here, the groups Γ0 and Γ are isomorphic (and free). The deformation
also goes in the reverse way: given a non compact surface of finite volume, we can deform it by
making cusps become circular boundary components.

In this perspective, our results are natural analogues of the more classical Duminy’s and Ghys’
theorems [21,34]:

Theorem 1.20 (Duminy). Let G ⊂ Diff2
+(S1) be a finitely generated group acting on S1 with an

exceptional minimal set Λ. Consider a connected component (a gap) J0 of S1 \ Λ. Then the Schreier
graph of the orbit X = G · J0 has infinitely many ends.

In the particular case where G ⊂ Diffω+(S1), this implies that the group G itself has infinitely
many ends.

Theorem 1.21 (Ghys). Let G ⊂ Diffω+(S1) be a finitely generated group acting with an exceptional
minimal set. Then G is virtually free.

The latter theorem is more than an analogy here, as it is fundamental in the proof of Theorem A.
In its full generality (namely, codimension-one foliations that are transversally of class C2),

the proof of Duminy’s Theorem is a gemstone. Here in this work we present a proof for groups of
real-analytic diffeomorphisms, which apparently was already known to Hector. This is relatively
simple because in Cω regularity we can use Hector’s lemma, but it is enlightening enough in view of
the proof of Theorem B.

Duminy’s Theorem and property (?) – In lower regularity, the statement of Theorem B
cannot hold, as one sees from the example of Thompson’s group T . However, there is an intermediate
result, on which Theorem B relies, that still holds for Cr minimal non-expandable actions (r ≥ 3):

Theorem C. Let G ⊂ Diffr+(S1) be finitely generated group of Cr diffeomorphisms, r ≥ 3, such
that the action of G is minimal, satisfies property (?) and has a non-expandable point x0 ∈ S1. Then
the Schreier graph of the orbit of x0 has infinitely many ends.

The best plausible extension of the theorem above would be the following:

Conjecture 1.22. Under the hypotheses of Theorem C, also the grupoid of germs Gx0 has infinitely
many ends.

In the statement of the conjecture, one could take for Gx0 the groupoid of germs defined on a
right or left neighbourhood of the orbit of x0. A local Cr diffeomorphism representing a germ in Gx0

is defined on a right (or left) neighbourhood of a point in the orbit of x0. In the following, we keep
the convention of considering Gx0 as the groupoid of right germs.

Despite our many efforts, we have not been able to prove Conjecture 1.22 in all its generality.
However, with the perspective of proving Theorem B, we have the following:

Theorem D. Let G ⊂ Diffω+(S1) be a finitely generated group of Cω diffeomorphisms, such that
the action of G is minimal, has property (?) and a non-expandable point x0 ∈ S1. Suppose that the
Schreier graph Sch(X,G) of the orbit X of the non-expandable point x0 ∈ NE has infinitely many
ends. Then the groupoid of one-sided germs Gx0 has also infinitely many ends.

Remark 1.23. In the statement of Theorem D, one may replace the grupoid Gx0 by the group G, as
in real-analytic regularity there is no difference. However, we prefer to talk of grupoids because our
proof is formulated in this language, hoping one day to get rid of the strong regularity assumption.
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Remark 1.24. It is important to stress that the assumption for C3 regularity is unavoidable for our
proof of Theorem C. Indeed, we are able to offer a proof only using control on the projective distortion
of the elements of the group, which classically uses the Schwarzian derivative and hence requires
three derivatives. However, we hope that Theorem C can be generalized to actions of class C2.

Motivations – It is perhaps worthwhile to extend this discussion to the description of the
dynamical properties of actions on the circle. First, notice that the notion of ergodicity can be
naturally extended to transformations with quasi-invariant measures (as for example the Lebesgue
measure for any C1 action) as saying that any G-invariant subset of the circle has either full or
zero Lebesgue measure. Now, going back to the 80s, it was observed by Shub and Sullivan [41] that
expanding actions of groups G ⊂ Diff1+α

+ (S1) have nice ergodic properties: if the action is minimal
then it is also ergodic with respect to the Lebesgue measure, whereas if the action has an exceptional
minimal set Λ, then the Lebesgue measure of Λ is zero and the complementary set S1 \ Λ splits into
finitely many distinct orbits of intervals (or gaps). An analogous result was known for Z actions by
C2 circle diffeomorphisms: in case of minimality (which, according to Denjoy’s theorem, is equivalent
to that nontrivial elements have irrational rotation number [7]), the action is Lebesgue ergodic (this
was independently proven by Katok [28] and Herman [26]).

One of the motivations for studying local flows for non locally discrete groups (see for instance
[37]) was to extend the method of Katok and Herman to more general actions. Indeed, the group
generated by a minimal circle diffeomorphism f is the most natural example of a non locally discrete
group: if (qn) is the sequence of denominators of the rational approximations of the rotation number
of f , then the sequence f qn tends to the identity in the C1 topology (see [26, Ch. VII] and also [36]).

One of the key ingredients behind these results is the technique of control of the affine distortion of
the action (highly exploited throughout this paper as well). In the 80s, this suggested the conjecture
that the picture above should hold as soon as control of distortion can be sought.

Conjecture 1.25 (Ghys, Sullivan). Let G ⊂ Diff2
+(S1) be a finitely generated group whose action

on the circle is minimal. Then the action is also Lebesgue ergodic.

Conjecture 1.26 (Ghys, Sullivan; Hector). Let G ⊂ Diff2
+(S1) be a finitely generated group whose

action on the circle has an exceptional minimal set Λ. Then the Lebesgue measure of Λ is zero, and
the complementary set S1 \ Λ splits into finitely many orbits of intervals.

Property (?) was first introduced in [10] as a property under which these conjectures can be
established by somewhat standard techniques. Roughly, as we already mentioned, from the set
NE ∩ Λ of non-expandable points it is possible to define an expansion procedure. More precisely, as
done in [18], one defines Markov partition of the minimal set, with a non-uniformly expanding map
encoding the dynamics of G. This allows to extend the technique of Shub and Sullivan and prove
the Conjectures 1.25 and 1.26 for groups with property (?).

State of the art – We hope that at this point the reader has got a flavour of why it is very
important to verify that locally discrete groups have property (?). After the results discussed in this
work, in the real-analytic framework, we are still left with one class of groups.

“Missing Piece” Conjecture. Let G ⊂ Diffω+(S1) be a finitely generated, one-ended group. Assume
that G is neither finitely presented nor has a sequence of torsion elements of unbounded order. Then
G cannot be locally discrete.

For a brief summary, see also Table 1. This simplified conjecture needs further comments. Our
impression is that if any counter-example existed, it should be very pathological. The feeling is
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that a locally discrete group of Diffω+(S1) should be Gromov-hyperbolic. Finitely generated Gromov-
hyperbolic groups are always finitely presented and have bounded torsion (see [3, Ch. III.Γ]). Even
if we are still not able to prove Gromov-hyperbolicity for general locally discrete groups, this has
been done in one particular case:

Theorem 1.27 (Deroin). Let G ⊂ Diffω+(S1) be a locally discrete, finitely generated group whose
action on the circle is minimal and expanding. Then G is Gromov-hyperbolic.

Unfortunately, Deroin has not published the proof of this result yet. His announced result
is actually stronger, and suggests that locally discrete groups of Diffω+(S1) carry some Fuchsian
geometry:

Theorem 1.28 (Deroin). Let G ⊂ Diffω+(S1) be a locally discrete, finitely generated group whose
action on the circle is minimal and expanding. Then G is analytically conjugate to a finite central
extension of a cocompact Fuchsian group.

The interested reader may consult the survey [8] for getting an idea of the landscape growing
around the study of locally discrete groups.

infinitely many ends two ends one end and NE = ∅ one end and NE 6= ∅
virtually free virtually Z finite central extension of a conjectured to be

cocompact Fuchsian group impossible

Table 1: Classification of locally discrete subgroups of Diffω+(S1).

2 Theorem A: Property (?) for groups with infinitely many ends

2.1 Stallings’ theorem and virtually free groups

An idea which can be traced back to Hector (and Ghys) [21] is that we can use the knowledge of
the action of G to restrict the possible Stallings’ decompositions of a group G acting by real-analytic
diffeomorphisms of the circle and admitting an exceptional minimal set. As a first illustrative example,
let us sketch an argument by Hector under the additional assumption of no torsion [21, Proposition
4.1].

Theorem 2.1 (Hector). Let G ⊂ Diffω+(S1) be a finitely generated, torsion-free group acting with
an exceptional minimal set. Then G is free.

Proof. Duminy’s theorem (Theorem 1.20) implies that G has infinitely many ends, so there is a
Stallings’ decomposition. Since the group is torsion free, the Stallings’ decomposition must be a free
product G = G1 ∗G2 of finitely generated groups G1 and G2. Now, neither factor acts minimally
(otherwise G does). If one of the factors acts with an exceptional minimal set, then we can expand
the free product G1 ∗ G2 until the moment we get G = H1 ∗ . . . ∗ Hn with every Hi acting with
some periodic orbit. Indeed, this procedure has to stop in a finite number of steps, for the rank (the
least number of generators) of the factors is less than the rank of the group (this follows from a
classical formula of Grushko; see [31]). Now we use that the action is by real-analytic diffeomorphisms.
Namely, Corollary 1.3 implies that the groups Hi’s must be either cyclic or direct products of an
infinite cyclic group with a finite group. Since the group G is torsion-free, the only possibility is that
every Hi is infinite cyclic. Thus, G is free, as claimed.
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In a similar manner, we can sketch the proof of Ghys’ Theorem 1.21 under the assumption that
the group G acting on the circle with an exceptional minimal set verifies a certain hypothesis, called
Dunwoody’s accessibility. Finitely generated groups with 0 or 1 ends are accessible (by definition)
and, in general, accessible groups are all those groups that can be obtained as amalgamated products
or HNN extensions of accessible groups over finite groups. Dunwoody proved that finitely presented
groups are accessible [13], but there are finitely generated groups that are not accessible [14].

Theorem 2.2 (Ghys). Let G ⊂ Diffω+(S1) be a finitely generated, accessible group acting with an
exceptional minimal set. Then G is virtually free.

Proof. Starting with a Stallings’ decomposition of G, say G = G1 ∗Z G2 or H∗Z , we argue as before
that the groups G1 and G2 or H cannot act minimally. If the action of one of these groups has a
finite orbit, then the group is virtually cyclic (Corollary 1.3). Otherwise, it acts with an exceptional
minimal set and Duminy’s Theorem 1.20 applies, so we can take a Stallings’ decomposition and
keep repeating this argument. Accessibility guarantees that this process stops after a finite number
of steps, so the group G is obtained by a (finite) combination of amalgamated products and HNN
extensions over finite groups, with virtually cyclic groups as basic pieces. Finally, these groups are
virtually free, as one deduces from the following classical theorem [27]:

Theorem 2.3 (Karrass, Pietrowski, Solitar). Let G1, G2 and H denote finitely generated, virtually
free groups and Z a finite group. Then the amalgamated product G1 ∗Z G2 and the HNN extension
H∗Z are also virtually free.

The rest of this section is dedicated to the proof of Theorem A.

2.2 Proof of Theorem A: Preliminaries

Let G ⊂ Diffω+(S1) be a locally discrete, finitely generated subgroup with infinitely many ends
acting minimally on the circle. Assume that G admits non-expandable points. By Stallings’ theorem,
we know that either G = G1 ∗Z G2 or G = H∗Z , with Z a finite group. For the proof of Theorem A,
we analyse the factors appearing in Stallings’ decompositions, as we have just illustrated.

2.3 First (possible) case: No Stallings’ factor acts minimally

If such a factor has a finite orbit, then it is virtually cyclic by Corollary 1.3. Otherwise, it acts
with an exceptional minimal set, and Ghys’ Theorem 1.21 implies that it is virtually free. Therefore,
G is either an amalgamated product of virtually free groups over a finite group or an HNN extension
of a virtually free group over a finite group. By the already mentioned theorem of Karrass, Pietrowski
and Solitar (Theorem 2.3), the group G itself is virtually free. We deduce that the group satisfies (?)
by Theorem 1.18.

2.4 Second (impossible) case: At least one factor acts minimally

Under this assumption, we will prove that G is non locally discrete borrowing one of the main
arguments from [11]. To do this, remark that it is enough to study the case where G = G1 ∗Z G2 is
an amalgamated product, since any HNN extension H∗Z contains copies of H ∗Z H as subgroups.
Indeed, if we denote by σ the stable letter (that is, the element conjugating the two embedded copies
of Z) in H∗Z , then H and σHσ−1 generate a subgroup isomorphic to H ∗Z H.
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Thus, from now on, we suppose that G is an amalgamated product G1 ∗Z G2 over a finite group
Z, and we assume that G1 acts minimally. In particular G1 is infinite, while G2 can possibly be
finite. For simplicity, we let G = G1 t G2 be a finite system of generators for G, with Gi generating
Gi and symmetric. We consider the length metric on the group G associated with this generating
system, and for every n ∈ N we let B(n) be the ball of radius n centred at the identity. Given a finite
set E ⊂ G, let ρ(E) denote the outer radius of E, that is, the minimal n ∈ N such that E ⊂ B(n).

Let us illustrate the main lines of the proof before getting involved in technicalities. This will be
also the opportunity to introduce some notation.

We fix a non-expandable point x0 ∈ NE, and for any finite set E ⊂ G, we let xE denote the
closest point on the right of x0 among the points in the image set E · x0 distinct from x0 (such a
point exists for any E which is not contained in the stabilizer of x0). This point corresponds to some
gE ∈ E, that is, xE = gE(x0). Besides, gE is uniquely defined modulo right multiplication with an
element in StabG(x0). The length of the interval JE = [x0, xE ] will be denoted by `(E).

In order to take account of the number of elements fixing x0, and hence of possible overlaps of
the intervals g(JE), for g ∈ E, we define

cE = max
h∈E

# (E ∩ hStabG(x0)) .

Recall that, under our assumption of real-analytic regularity, the stabilizer of x0 is either trivial or
infinite cyclic (Theorem 1.2).

As in [11,19], the proof is carried on in three different stages, which will be exposed separately
in the next paragraphs (with an intermezzo concerning some group theoretical aspects).

Step 1. – The first and most important step (Proposition 2.6) is to describe a sufficient condition
guaranteeing that for a prescribed sequence of finite subsets E(n) ⊂ G, setting F (n) = E(n)−1E(n),
the elements gF (n) “locally converge” (in the C1 topology) to the identity. In concrete terms, letting

SE =
∑
g∈E

g′(x0),

we will show that, in order to ensure the desired convergence, it is enough that

ρ(E(n))
cE(n)
SE(n)

= o(1) as n goes to infinity. (2.1)

Notice, however, that this criterion does not provide a contradiction to the hypothesis of local
discreteness of G, since we are only able to show that gF (n) is closer and closer to id when restricted
to (a complex extension of) an interval containing JF (n), which is unfortunately shrinking to x0.
Remark 2.4. In the following, we will see that will deal both with C0 and C1 local convergence. In
fact, as the elements are real-analytic, the classical Cauchy estimates imply that the two notions are
equivalent. The point is that for proving that the sequence of elements gF (n) converges C0 to the
identity, we first prove that the derivatives converge to 1 and deduce from the control of the affine
distortion that the elements converge C0.

Step 2. – We then show that it is very easy to find examples of sequences (E(n))n∈N which satisfy
the criterion above, even in a very strong way. For this, we use three key facts:

1. G1 acts minimally, hence taking a sufficiently large integer n ∈ N, the sum
∑
g∈B1(n) g

′(x) can
be made as large as we want (Proposition 2.27). Here, B1(n) is the ball of radius n in G1 with
respect to the generating set G1 .
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2. Using the tree-like structure and the normal form in amalgamated products, we move from a
G1-slice in G to another. Doing this, we increase the lower bound for SE(n) in an exponential
way (Proposition 2.30). As a consequence, there exists a > 1, such that

SE(n) ≥ aρ(E(n)).

3. At the same time, studying how the stabilizer StabG(x0) sits inside G, we prove that cE(n) has
at most linear growth in terms of ρ(E(n)) (Proposition 2.31). This estimate turns to be fine
enough, since SE(n) grows exponentially.

Step 3. – The key idea here relies on a result of Ghys [23, Proposition 2.7] (that can be traced back
to Gromov [6, § 7.11.E1]) about groups of analytic local diffeomorphisms defined on the complex
neighbourhood UC

r (x0) of radius r > 0 of x0 ∈ C:

Proposition 2.5. For any r > 0 there exists ε0 > 0 with the following property: Assume that the
complex analytic local diffeomorphisms f1, f2 : UC

r (x0)→C are ε0-close (in the C0 topology) to the
identity, and let the sequence fk be defined by the recurrence relation

fk+2 = [fk, fk+1], k = 1, 2, 3, . . .

Then all the maps fk are defined on the disc UC
r/2(x0) of radius 1/2, and fk converges to the identity

in the C1 topology on UC
r/2(x0).

The main point of this proposition is that if the sequence of iterated commutators (fk)k∈N is not
eventually trivial, then f1 and f2 generate a group which is non locally discrete.

From the previous steps, it is not difficult to find elements f1, f2 of the form gE(m) which are
very close to the identity on some neighbourhood of x0, but we must exhibit explicit f1 and f2
for which we are able to show that the sequence of iterated commutators fk is not eventually the
identity. This is certainly the case if f1 and f2 generate a free group: we prove in Proposition 2.33
that it is possible to find such two elements. In order to do this, we introduce a good geometric
setting (namely the action on the Bass-Serre tree) and find a ping-pong configuration.

2.5 Step 1: Getting close to the identity

Here we review the argument given in [11, § 3.2] and [19, § 2.5], which explains how to find
elements which are close to the identity in a neighbourhood of a non-expandable point. The result
is stated in a general form, because of the algebraic issues that we have to overcome in § 2.8. The
main result of this section is a variation of [11, Lemma 3.15]:

Proposition 2.6. Let (E(n))n∈N be a sequence of subsets of G containing the identity. If

ρ(E(n))
cE(n)
SE(n)

= o(1) as n goes to infinity,

then the sequence gF (n) for F (n) = E(n)−1E(n) converges to the identity in the C1 topology on a
complex disc of radius o(1/ρ(E(n))) around x0. More precisely, considering rn = o (1/ρ(E(n))) such
that cE(n)

SE(n)
= o (rn) as n goes to infinity,
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the (affinely) rescaled sequence

g̃F (n)(t) =
gF (n)(x0 + rn t)− x0

rn

converges to the identity in C0(UC
1 (0)).

We avoid the (somehow technical) details of the proof and prefer to explain the relevant ideas,
which mostly rely on the classical technique of control of affine distortion (see [11, Lemma 3.7]).
To remind this, recall that if J ⊂ S1 is an interval, the distortion coefficient of a diffeomorphism
g : J→ g(J) on J is defined as

κ(g; J) = sup
x,y∈J

∣∣∣∣log g
′(x)
g′(y)

∣∣∣∣ .
This measures how far is g to be an affine map. Besides, this is well behaved under composition and
inversion:

κ(gh; J) ≤ κ(g;h(J)) + κ(h; J), κ(g; J) = κ(g−1; g(J)).

If we fix a finite generating system G of the group G and set CG = maxg∈G∪G−1 supS1 |g′′/g′|, then

κ(g; J) ≤ CG |J | for every g ∈ G.

This implies that if g = gn · · · g1 belongs to the ball of radius n in G, gi ∈ G, then

κ(gn · · · g1; J) ≤ CG
n−1∑
i=0
|gi · · · g1(J)|, (2.2)

where gi · · · g1 = id for i = 0.
The inequality (2.2) suggests that the control of the affine distortion of g on some small interval J

can be controlled by the intermediate compositions gi · · · g1. This is better explained in the following
way: Let

S =
n−1∑
i=0

(gi · · · g1)′(x0) (2.3)

denote the sum of the intermediate derivatives at some single point x0 ∈ S1. Then the affine
distortion of g can be controlled in a (complex) neighbourhood of radius ∼ 1/S about x0. More
precisely, we have the following statement (which goes back to A. Schwartz and, later, to Sullivan):

Proposition 2.7. For a point x0 ∈ S1 and g ∈ B(n), let S be as in (2.3) and c = log 2/4CG. For
every r ≤ c/S, we have the following bound on the affine distortion of g:

κ(g;UC
r (x0)) ≤ 4CGSr.

The key observation in our framework (and originally of [11,19]) is that at non-expandable points
x0 ∈ NE, we obviously have S ≤ n for g ∈ B(n). Therefore, for a very large n, in a neighbourhood
of size r � 1/n about x0, the maps in B(n) are almost affine. In particular, the element gF (n)
(resp. g̃F (n)) is almost affine on a neighbourhood of radius rn = o (1/ρ(E(n))) (resp. 1) about x0
(resp. 0).

To see that the derivative of gF (n) (and g̃F (n)) is close to 1, we consider the inverse map g−1
F (n),

which satisfies
(g−1
F (n))

′(x0) ≤ 1 and (g−1
F (n))

′(xF (n)) = 1
g′F (n)(x0) ≥ 1.
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The point xF (n) is at distance `F (n) from x0. If `F (n) = o(rn), then the control on the affine distortion
guarantees that the derivative of g−1

F (n), and hence of gF (n), is close to 1 on the neighbourhood of
radius rn. Indeed, for every z ∈ Ur(x0) one has

log(g−1
F (n))

′(z) = log
(g−1
F (n))

′(z)
(g−1
F (n))′(x0)

+ log(g−1
F (n))

′(x0) ≤ sup
x,y∈Ur(x0)

log
(g−1
F (n))

′(x)
(g−1
F (n))′(y)

and

log(g−1
F (n))

′(z) = log
(g−1
F (n))

′(z)
(g−1
F (n))′(xF (n))

+ log(g−1
F (n))

′(xF (n)) ≥ inf
x,y∈Ur(x0)

log
(g−1
F (n))

′(x)
(g−1
F (n))′(y)

.

Thus supUr(x0) | log(g−1
F (n))

′| ≤ κ(g−1
F (n), U

C
r (x0)).

The asymptotic condition `F (n) = o(rn) assures that also the map g̃F (n) is almost the identity,
since g̃F (n)(0) = `F (n)/rn. Therefore, we get the desired conclusion from the following key estimate:

Lemma 2.8. Let E ⊂ G be a finite subset of G containing the identity and define F = E−1E. Then
the length `F verifies

`F ≤ C
cE
SE

,

where the constant C > 0 does not depend on E.

Sketch of the proof. We observe that any two intervals g(JF ) and h(JF ), for g, h ∈ E, are either
disjoint or have the same leftmost points, with equality if and only if g ∈ h StabG(x0). Indeed,
suppose that the left endpoint of h(JF ) belongs to g(JF ). Then h−1g(x0) is closer than xF to x0 on
the right, and since h−1g ∈ E−1E = F , we must have h−1g(x0) = x0, that is, g ∈ h StabG(x0).

Therefore, the union of the intervals g(JF ), for g ∈ E, covers the circle S1 at most cE times.
With the (quite subtle) argument in [11, Lemma 3.15] relying on the control of the affine distortion,
we find

`F ≤ C
cE
SE

,

as desired.

2.6 Intermezzo: Basic Bass-Serre theory for amalgamated products and actions
on trees

In this part we recall some elementary facts about groups acting on trees. These are well-known
results, but we give details to develop the geometrical intuition behind the combinatorial work
needed for the rest of the proof of Theorem A.

Normal forms – Every element in an amalgamated product can be written in a normal form
(see [31,40]).

Lemma 2.9. Fix transversal sets of cosets T1 ⊂ G1 and T2 ⊂ G2 for Z\G1 and Z\G2 respectively,
both containing the identity. Then every element g ∈ G has a unique factorization as g = γ tn · · · t1,
with γ ∈ Z and tj ∈ Tij \ {id}, with none of two consecutive ij’s equal.

We sketch a geometrical proof of this lemma using Bass-Serre theory [40]. Every amalgamated
product acts isometrically on a simplicial tree without edge-inversion, namely the Bass-Serre tree,
that we denote it by X. Bass-Serre theory holds more generally, but for an amalgamated product
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e
e.g

π
G1 G2

G2gn

G1g

Figure 2.1: The geodesic path in the Bass-Serre which determines the normal form. Here is an
example where we have t1 ∈ G2 and tn ∈ G2.

G = G1 ∗Z G2, the tree and the action on it have a simple description: the vertices are the cosets
{Gig | g ∈ G, i = 1, 2}, and the edges are {(G1g,G2g) | g ∈ G}. The group G acts by right
multiplication: Gig.ϕ = Gigϕ. The edge e = (G1, G2) is a fundamental domain for the action of G
on X: each factor group Gi coincides with the stabilizer of the vertex Gi, and Z = G1 ∩G2 is the
stabilizer of the edge e.

Remark that if (G1g,G2g) and (G1g
′, G2g

′) represent the same edge, then we have Gig = Gig
′

for i = 1, 2. We deduce that g′g−1 belongs to the intersection G1 ∩ G2 = Z. So g′ = γg for some
γ ∈ Z.

Proof of Lemma 2.9. If an element g ∈ G belongs to a factor group Gi, then there is a unique t ∈ Ti
and γ ∈ Z such that g = γt.

If an element g is not in a factor group, then the fundamental domain e and its image e.g do not
intersect. Therefore, since X is a tree, there is a unique geodesic path π connecting e to e.g (see
Figure 2.1). The path is of the form

π = (Gi1 = Gi1g1, Gi2g2, Gi3g3, . . . , Gingn = Ging),

with the gk’s verifying Gikgk = Gikgk−1 for every k = 2, . . . n, and none of two consecutive ij ’s equal.
From the remark above, the gk’s are uniquely defined modulo Z. However, if the transversal sets T1
and T2 are given, then we can write every gk in the form

g1 = t1,

g2 = t2t1,

· · ·
gn = tn · · · t1, with every tj ∈ Tij \ {id},

which is unique. Since Gingn = Ging, Gin+1gn+1 = Gin+1g and Gin+1gn+1 = Gin+1gn, the product
gg−1
n = γ belongs to Z = Gin ∩Gin+1 .

Remark 2.10. Consider an element g ∈ G = G1 ∗Z G2, written in normal form as g = γ tn · · · t1.
Observe that if g is written differently as g = sk · · · s1 with every sj ∈ Gij \ Z and none of two
consecutive ij ’s equal, then k = n, and for every j = 1, . . . , n, the factor tj belongs to Gij . Moreover
every quotient t−1

j sj belongs to Z.
Indeed, the length n is exactly the length of the geodesic path in the Bass-Serre tree π from

the edge e = (G1, G2) to the edge e.g = (G1g,G2g), and the indices ij ’s correspond to the vertices
visited by the path.

We also have that the inverse g−1 can be written in a normal form of length n, since the geodesic
path from e to e.g−1 is the translation π.g−1 (with opposite orientation), of the path π from e to e.g.
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Figure 2.2: Existence of the translation axis for a hyperbolic element.

Tree isometries – Let us study in more detail the action of G on its Bass-Serre tree. The reader
may consult [5] for a general description of actions on (real) trees.

As in the previous proof, we denote by X the Bass-Serre tree of G and by d the graph metric on
the tree X. We keep the convention of right action.

Definition 2.11. Given an isometry ϕ of the tree (X, d), we denote by `(ϕ) its translation length:

`(ϕ) = min{d(x, x.ϕ) | x ∈ X}. (2.4)

If `(ϕ) = 0 then ϕ is elliptic, otherwise, ϕ is hyperbolic.

Observe that the minimum in (2.4) is attained because the distance d on X takes discrete values.
In particular, we have:

Lemma 2.12. Let G = G1 ∗Z G2 be an amalgamated product and let X be its Bass-Serre tree. Take
an element ϕ ∈ G. The following statements are equivalent:

1. the element ϕ belongs to a conjugate factor group (i.e. a subgroup of G of the form gGig
−1);

2. ϕ fixes a point in X;

3. ϕ is elliptic, that is, `(ϕ) = 0.

Any tree isometry ϕ has a natural invariant set X(ϕ), which is a convex subset of X. This is
the union of the minimal invariant sets. More explicitly, for an elliptic element, X(ϕ) is defined as
the set of fixed points of ϕ. Observe that ϕ fixes more than one point if and only if ϕ belongs to
some conjugate of the edge group Z.

For hyperbolic elements, the invariant set is described as follows:

Lemma 2.13. If ϕ ∈ G is hyperbolic, the invariant set X(ϕ) is a translation axis, i.e. an invariant
bi-infinite geodesic line in X, on which ϕ acts as a translation of displacement `(ϕ).

Moreover, for any vertex x ∈ X, one has

d(x, x.ϕ) = `(ϕ) + 2d(x,X(ϕ)). (2.5)

Proof. Consider a point x ∈ X that minimizes the translation length: d(x, x.ϕ) = `(ϕ). We denote by
π = (x = x0, x1, . . . , x`(ϕ) = x.ϕ) the geodesic path from x to x.ϕ in X. We claim that the segments
π and π.ϕ only intersect at x.ϕ. Indeed, since X is a tree, the intersection π ∩ π.ϕ is connected, and
if it were not a point, then the points x1 and x1.ϕ would be at distance `(ϕ)− 2, contradicting the
minimality (see Figure 2.2 on the left). Therefore, the union

X(ϕ) =
⋃
n∈Z

π.ϕn (2.6)

is a bi-infinite geodesic in X, on which ϕ acts as a translation by `(ϕ) (see Figure 2.2 on the right).
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x.ϕ?
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π π.ϕ

Figure 2.3: Uniqueness of the translation axis for a hyperbolic element.

Let us prove that the translation axis is unique. First suppose that two translation axes intersect.
Then the intersection is a (possibly infinite) interval that is ϕ-invariant. Since ϕ acts as a translation
on the intersection, the only possibility is that both axes actually coincide. Secondly, if the intersection
is empty, then the two axes must be parallel. More precisely, the set of shortest geodesic paths
connecting the two axes is invariant under the isometry ϕ. However, such a geodesic path is unique
in a tree, hence it must be fixed by ϕ (see Figure 2.3). This contradicts `(ϕ) > 0.

Finally, let us prove (2.5). Let γ be the geodesic segment from x to X(ϕ), with endpoint y ∈ X(ϕ).
Then γ.ϕ is the geodesic segment from x.ϕ to X(ϕ), with endpoint y.ϕ. Then we have

d(x, x.ϕ) = d(x, y) + d(y, y.ϕ) + d(y.ϕ, x.ϕ),

from which one easily deduces (2.5).

Remark 2.14. The relation (2.5) holds even for an elliptic isometry ϕ, in which case we simply have

d(x, x.ϕ) = 2d(x,X(ϕ)).

More precisely, if γ is the geodesic segment from x to X(ϕ), with endpoint y ∈ X(ϕ), then γ.ϕ is
the geodesic segment from x.ϕ to X(ϕ), with endpoint y.ϕ = y.

The following result gives a geometric condition for detecting the position of the invariant set of
a tree isometry:

Proposition 2.15. Let G be a group acting isometrically on a tree X. Let x ∈ X be a fixed vertex
of the tree and ϕ ∈ G be any element. Let π−, π+ denote respectively the oriented geodesic paths
in X connecting x to x.ϕ−, x.ϕ+, starting from x. Suppose that π− and π+ share the first edge e.
Then the invariant set X(ϕ) is contained in the subtree of X which is the connected component of
X \ {x} containing e.

Remark 2.16. As it will appear clear from the proof (cf. also Remark 2.14), if the element ϕ is
elliptic, then it is enough to look at the geodesic path from x to x.ϕ: if π+ starts with the edge e, so
does π−.

Proof. Suppose first that the element ϕ ∈ G is elliptic. The statement is clearly empty if x = x.ϕ, so
we suppose that we are not in this situation. Let π+ be the geodesic segment connecting x to x.ϕ. As
described in Remark 2.14, the invariant set X(ϕ) intersects the path π+ exactly at its middle point.

Suppose now that ϕ is hyperbolic. Observe that our hypothesis guarantees that x does not belong
to the hyperbolic axis X(ϕ) = X(φ−1), because otherwise the paths π− and π+ would intersect only
at x. Then, as we saw in Lemma 2.13, the paths π± from x to x.ϕ±1 decompose into three nontrivial
pieces: first, the path reaches the translation axis X(ϕ), then it crosses the axis along a segment of
length `(ϕ), and finally it goes out of X(ϕ) to reach the image x.ϕ. By uniqueness of geodesics in a
tree, the first pieces for π− and π+ must coincide. This gives the result.
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Distorted elements – First, we recall the following:
Definition 2.17. An element ϕ of a finitely generated group G is undistorted (in G) if the length
of the element ϕn grows linearly in n. (Notice that this definition is invariant under quasi-isometries
and in particular it does not depend on the finite generating system chosen for defining the length
metric on G.)
Lemma 2.18. Let G = G1 ∗Z G2 be an amalgamated product and let ϕ ∈ G be a distorted element
in G. Then ϕ is conjugate to an element into one of the two factors (and it is actually distorted in
the conjugate factor with respect to the restricted metric).

Proof. Because of Lemma 2.12, it is enough to prove that if the element ϕ is hyperbolic, then it is
undistorted. Consider a point x on the axis X(ϕ). Since ϕ acts by translation by `(ϕ) on X(ϕ), one
has d(x, x.ϕn) = |n|`(ϕ). If ϕ was distorted, then d(x, x.ϕn) would have sublinear growth (apply the
triangular inequality), but we have just proven that it grows linearly.

Lemma 2.19. Let G be a finitely generated virtually free group. Then every element of infinite
order is undistorted in G.

Proof. The statement can be seen as a consequence of Lemma 2.18 above and Theorem 2.3. There
is however a simpler, more classical, proof. Indeed, up to quasi-isometry, it is enough to prove the
result for a group G which is free. For free groups there are many ways to see this, here we choose to
give an argument relying on actions on trees. Indeed, one of the first byproducts of the Bass-Serre
theory is that a group is free if and only if it has a free action on a tree. So consider such a free
action: every element acts as a hyperbolic isometry, so it is undistorted.

Ping-pong and free groups – Let us first give a statement about commutators in a free group:
Lemma 2.20. In the rank-two free group F2, consider two free generators a and b. Define the
sequence of iterated commutators 

w0 = a,

w1 = b,

wk+2 = [wk, wk+1].
Let H be the free subgroup generated by w2 and w3. Given an element h ∈ H, the following property
holds: when writing h as a reduced word in the generating system {a±1, b±1}, then the expression
does not contain a±2 and b±3 as subwords.

The following nice proof has been explained to us by Jarek Kȩdra on MathOverflow.

Proof. Every element in the commutator subgroup [F2, F2] can be represented by an oriented closed
path on the square grid Z2, starting at the origin: the letters a, b are represented by edges going to
the right and up, respectively. Since the subgroup generated by w2, w3 is contained in [F2, F2], we
can use this interpretation for any element in H.

In this interpretation, the element w2 is represented by a simple square loop, while w3 is
represented by a loop describing a “figure eight”, namely two vertically adjacent squares (see
Figure 2.4).

Thus every element in the group H describes a closed loop that is contained in the figure eight,
simply because when concatenating w±1

2 , w±1
3 , the support of the loops cannot escape. In particular

the reduced form for an element h ∈ H cannot contain powers of a± exceeding 1, otherwise the
support of the loop it represent would escape the figure eight from one of its vertical sides. Similarly
we deduce that there is no power of b±1 exceeding 2.
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Figure 2.4: The paths representing the commutators w2 (left) and w3 (right).

Definition 2.21. Let G be a group acting of isometries of a tree X. Let β ∈ N be a positive integer.
We say that G is β-bounded if for any isometry ϕ ∈ G fixing an edge of X, then ϕn = id for some
|n| ≤ β. In other words, β is a uniform upper bound on the order of isometries of G fixing edges.

Lemma 2.22. Let G be a group of isometries of a tree X, which is β-bounded. If ϕ ∈ G is such
that there exists a positive integer p ∈ N such that ϕp fixes an edge, then ϕ has order at most βp.

Proof. It follows directly from Definition 2.21 above.

Lemma 2.23. Let G be a group of isometries of a tree X, which is β-bounded. Consider an isometry
ϕ ∈ G whose order is at least 5β (possibly infinite).

Consider a connected component C of the complement X \X(ϕ) of the invariant set of ϕ. Then
for every power p ∈ {±1, . . . ,±4}, the image ϕp(C) has empty intersection with C.

Proof. Since C is a connected component of the complement of the invariant set X(ϕ), there is a
unique edge e connecting X(f) to C.

Suppose there is p > 0 such that ϕp 6= id and the intersection ϕp(C) ∩ C is not empty. The
power ϕp must fix the edge e, so ϕp fixes one edge. As G is β-bounded, Lemma 2.22 implies that we
have ϕpβ = id. Thus, by hypothesis, we must have pβ ≥ 5β. This implies p ≥ 5.

When p < 0, considering ϕ−1 we find similarly p ≤ −5. This ends the proof.

Now we can proceed to the main result of this paragraph, which is a variation on the classical
ping-pong lemma:

Proposition 2.24 (Ping-pong). Let G be a group acting by isometries on a tree X, which is
β-bounded. Let ϕ,ψ ∈ G be two tree isometries such that:

1. their invariant sets are disjoint,

2. their order is at least 5β (possibly infinite).

Then h = [ϕ,ψ] and k = [ψ, [ϕ,ψ]] generate a free subgroup of G.

Proof. Let ϕ and ψ be two isometries with disjoint invariant sets X(ϕ) and X(ψ). Denote by π the
geodesic path in X connecting these two sets. Let a and b be the vertices on π that lie on X(ϕ) and
X(ψ) respectively. We consider the following two subtrees of X:

1. A is the maximal subtree of X that contains a but not the rest of π;
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2. B is the maximal subtree of X that contains b but not the rest of π.

Consider an element g in the group generated by h and k. Up to cyclical rewriting (that is, up to
pass to a conjugate by an element in 〈ϕ,ψ〉)1 the element g can be written it in the form

g = a1b1 · · · anbn, ai ∈ 〈ϕ〉, bi ∈ 〈ψ〉, (2.7)

which is (formally) reduced in the free group F (ϕ,ψ). Moreover Lemma 2.20 implies that

ai ∈ {ϕ±1, · · ·ϕ±4}, bi ∈ {ψ±1, · · · , ψ±4} for every i = 1, . . . , n :

indeed the lemma says initially that powers are bounded by 2, however after a cyclical rewriting
powers may increase up to 4. Thus, applying Lemma 2.23, we observe the following ping-pong
dynamics:

B.ai ⊂ A and A.bi ⊂ B for every i = 1, . . . , n.

Therefore, if we apply g to B, we must have

g.B ⊂ A.

As A and B are disjoint, this implies that g is not the identity in G.

Next, we detect the translation axis of certain hyperbolic elements.

Lemma 2.25. Let G = G1 ∗Z G2. Consider an element ϕ ∈ G of the form

ϕ = σntnσn−1tn−1 · · ·σ1t1, with ti ∈ G1 \ Z, σi ∈ G2 \ Z for every i = 1, . . . n. (2.8)

Set e = (G1, G2). Then ϕ is hyperbolic, and its translation axis is

X(ϕ) =
⋃
k∈Z

(π ∪ e).ϕk,

where π is the geodesic path between e and the image e.ϕ. That is, X(ϕ) is the bi-infinite geodesic
path

X(ϕ) = (. . . , G2t
−1
n σ−1

n , G1σ
−1
n , G2, G1, G2t1, G1σ1t1, . . . , G2tnσn−1 · · · t1, G1ϕ,G2t1ϕ, . . .). (2.9)

In particular, we have `(ϕ) = 2n. (See Figure 2.5.)

Proof. We have to prove that the path (2.9) is geodesic. That is, we have to prove that there is no
backtracking, which is the same as proving that any two vertices on it are distinct. This can be
verified directly from the uniqueness of the normal form (Lemma 2.9 and Remark 2.10), noticing
that the normal form of a power ϕk is

(σntnσn−1tn−1 · · ·σ1t1) · · · (σntnσn−1tn−1 · · ·σ1t1),

with the (σntnσn−1tn−1 · · ·σ1t1) repeated k times.

Remark 2.26. For any g ∈ G and ϕ of the form (2.8), the translation axis of the conjugate ψ = gϕg−1

is X(ψ) = X(ϕ).g−1.
1Notice that the group generated by h, k is not normal, so the cyclical rewriting may take g out of this group.

However this has no influence on the rest of the proof.
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G2ϕ
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G1σt = G1ϕe.ϕ

X(ϕ)

Figure 2.5: The translation axis of an element ϕ = σt, with t ∈ G1 \ Z, σ ∈ G2 \ Z.

2.7 Step 2: An exponential lower bound for the sum of derivatives

Using the normal form of elements in an amalgamated product, we will use a tool developed in
[11] for free groups. The aim of this step is to find a sequence of subsets A(n) with an exponential
lower bound for SA(n). We actually prove more: the exponential lower bound for the sum of the
derivatives holds at every point x ∈ S1. This turns out to be very useful, since it gives exponential
lower bounds for the sum SψA(n)ψ−1 associated to each conjugate set ψA(n)ψ−1 of A(n), where
ψ ∈ G.

We start by noticing that, since G1 acts minimally, the proof of [11, Proposition 2.5] combined
with a compactness type argument immediately yields:

Proposition 2.27. For every M > 0, there exists R1 ∈ N such that for every x ∈ S1 we have∑
g∈B1(R1)

g′(x) > M, (2.10)

where B1(R1) is the ball of radius R1 in G1.

Using the previous proposition, we next prove:

Lemma 2.28. For every M ′ > 0, there exists R′1 ∈ N such that∑
t∈B×1 (R′1)∩T1

t′(x) > M ′,

where B×1 (R1) is the ball B1(R1) in G1, but with the identity excluded.

Proof. Let c0 = |Z| · supγ∈Z ‖γ′‖0. Take M > c0(1 + M ′) and fix the associated R1 given by
Proposition 2.27. Decomposing the sum (2.10) using the transversal set, we write∑

g∈B1(R1)
g′(x) =

∑
γ∈Z, t∈T1 : γt∈B1(R1)

(γt)′(x). (2.11)

Observe that, by the triangular inequality, one has the inclusion

{g = γt | γ ∈ Z, t ∈ T1 such that γt ∈ B1(R1)} ⊂ {g = γt | γ ∈ Z, t ∈ B1(R1 + ρ(Z)) ∩ T1},
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(recall that ρ(Z) denotes the outer radius of the set Z). Thus the sum (2.11) is bounded from above
by the same sum but over the larger set:

∑
g∈B1(R1)

g′(x) ≤
∑
γ∈Z

 ∑
t∈B1(R1+ρ(Z))∩T1

(γt)′(x)

 .
Next, using the chain rule and taking care of the identity element, we obtain:

M ≤
∑

g∈B1(R1)
g′(x) ≤

∑
γ∈Z

 ∑
t∈B1(R1+ρ(Z))∩T1

γ′(t(x))t′(x)


≤ |Z| · sup

γ∈Z
‖γ′‖0

1 +
∑

t∈B×1 (R1+ρ(Z))∩T1

t′(x)


= c0

1 +
∑

t∈B×1 (R1+ρ(Z))∩T1

t′(x)

 .
Setting R′1 = R1 + ρ(Z), this closes the proof.

If we now consider repeat alternate products by representatives in T2, it is easy to construct a
sequence of sets A(n) with an exponential lower bound for the sum of the derivatives. Actually, it is
enough to fix an element σ ∈ T2 \ {id}, and define the product set

A(n) = σ
(
B×1 (R′1) ∩ T1

)
· · ·σ

(
B×1 (R′1) ∩ T1

)
,

where the product of σ
(
B×1 (R′1) ∩ T1

)
is repeated n times and R′1 is appropriately chosen. Notice

that A(n) is contained in the ball of radius n(R′1 + dG(id, σ)) in G, so the outer radius of A(n) grows
at most linearly on n. Indeed, ρ(A(n)) ≤ n(R′1 + dG(id, σ)).

Lemma 2.29. There exists a > 1 such that for all n ∈ N and every x ∈ S1,∑
g∈A(n)

g′(x) ≥ aρ(A(n)).

Proof. TakeM ′ > (inf σ′)−1 and the associated R′1 from Lemma 2.28. Let us consider all the products
σt1, with t1 ∈ B×1 (R′1) ∩ T1. We define M = M ′ · inf σ′, which is larger than 1 by assumption. With
this choice, we have ∑

g∈A(n)
g′(x) =

∑
t1,...,tn∈B×1 (R′1)∩T1

(σtn · · ·σt1)′(x)

≥M ·
∑

t1,...,tn−1∈B×1 (R′1)∩T1

(σtn−1 · · ·σt1)′(x).

Proceeding inductively, we get SA(n)(x) ≥Mn. Letting a = M
1/(R′1+dG(id,σ)), we obtain the desired

exponential lower bound.

Finally, we have:
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Proposition 2.30. For any ψ ∈ G, there exists a constant C(ψ) such that

SψA(n)ψ−1 ≥ C(ψ) aρ(ψA(n)ψ−1).

Proof. For ψ ∈ G, let λ = ‖ψ‖ denote its length in the generating system G. Then for any n ∈ N,
we have

ρ
(
ψA(n)ψ−1

)
≤ ρ(A(n)) + 2λ.

We can easily compare the sum SψA(n)ψ−1 with the sum of the derivatives of elements in A(n):

SψA(n)ψ−1 =
∑

g∈ψA(n)ψ−1

g′(x0)

=
∑

h∈A(n)
(ψhψ−1)′(x0)

≥ inf ψ′ ·
∑

h∈A(n)
h′(ψ−1(x0)) · (ψ−1)′(x0).

Hence, by Lemma 2.29, we have the inequality

SψA(n)ψ−1 ≥
(
inf ψ′ · (ψ−1)′(x0)

)
aρ(A(n)).

The proof is finished by letting C(ψ) = a−2λ (ψ−1)′(x0) inf ψ′.

Now, let us set E(n) = {id}∪A(n) and F (n) = E(n)−1E(n). In order to close the second step, it
remains to estimate the quantity cψE(n)ψ−1 , which gives an upper bound for the number of overlaps
of the intervals g(JψF (n)ψ−1), for g ∈ ψE(n)ψ−1.

Proposition 2.31. For any ψ ∈ G, the function

cψE(n)ψ−1 = max
h∈ψE(n)ψ−1

#
(
ψE(n)ψ−1 ∩ hStabG(x0)

)
grows at most linearly in terms of the outer radius ρ

(
ψE(n)ψ−1). More precisely, there exists a

constant L ∈ N such that cψE(n)ψ−1 ≤ Lρ
(
ψE(n)ψ−1).

Proof. If the stabilizer StabG(x0) is trivial, clearly cE is always 1, no matter what E is. Hence, we
can suppose that the stabilizer StabG(x0) is infinite cyclic and generated by some element ϕ ∈ G.
Here we distinguish two cases, depending on whether ϕ is undistorted in G or not. If ϕ is undistorted,
then the quantity cψE(n)ψ−1 grows at most linearly in terms of the outer radius ρ(ψE(n)ψ−1). If
ϕ is distorted, Lemma 2.18 implies that ϕ belongs to a conjugate factor g−1Gig. Without loss of
generality, we can suppose that if ϕ is distorted then ϕ ∈ g−1G1g, for some g ∈ G. Indeed, only a
subgroup acting minimally can contain distorted elements, since virtually free groups do not have
distorted elements of infinite order (Lemma 2.19). Let us show that in this case cψE(n)ψ−1 is bounded
in n.

Notice first that the quantity

cψE(n)ψ−1 = max
h∈ψE(n)ψ−1

#
(
ψE(n)ψ−1 ∩ hStabG(x0)

)
is also equal to

max
h∈E(n)

#
(
E(n) ∩ hψ−1StabG(x0)ψ

)
,
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X(h)

X(h) ∩X(h̃)

Figure 2.6: The translation axes of the two elements in the proof of Proposition 2.31

therefore up to replacing g above with gψ, it is enough to find a uniform bound for cE(n).
Let us fix h̃ ∈ A(n), and suppose that there exists some h ∈ E(n), and ` ∈ Z such that h = h̃ ϕ`.

After Lemma 2.25, the elements h and h̃ are hyperbolic isometries, with translation length 2n and
their translation axes intersect, as they both contain the segment (G1σ

−1, G2, G1).
Consider the point G1g in the Bass-Serre tree, which is fixed by ϕ ∈ g−1G1g. Because of the

equality h̃−1h = ϕ` ∈ g−1G1g, the images G1gh
−1 and G1gh̃

−1 are the same (recall that the action
on the Bass-Serre tree is naturally a right action). Applying the formula (2.5) for the distances of
the images, we find

d(G1g,G1gh̃
−1) = 2n+ 2d(G1g,X(h̃)),

d(G1g,G1gh
−1) = 2n+ 2d(G1g,X(h))

and by equality of the images, we must have d(G1g,X(h̃)) = d(G1g,X(h)).
Suppose first that this distance is not zero. Since the two axes intersect, the geodesic segments

from G1g to X(h̃) and X(h) respectively, must be the same: indeed, if this was not the case, these
segments would give a nontrivial geodesic path connecting X(h) and X(h̃); then the union of such
a path and the intersection of the axes would give a nontrivial loop in the tree. Call this geodesic
segment γ, which goes from G1g to the intersection X(h) ∩X(h̃).

We claim that if γ has more than one vertex, then the quotient h̃−1h = ϕ` fixes it: indeed, we
repeat the previous argument and get that the geodesic paths from G1gh

−1 = G1gh̃
−1 to X(h) and

X(h̃) coincide, and this common path is exactly the image γ.h−1 = γ.h̃−1.
From the claim we deduce that ϕ` belongs to a conjugate of the edge group Z. However ϕ has

infinite order, so this case is impossible.
Thus the vertex G1g belongs to both axes X(h) and X(h̃). Since the images G1gh

−1 and G1gh̃
−1

are the same, we have that the intersection X(h) ∩X(h̃) contains the whole segment of length 2n
between G1g and its image G1gh

−1.
On the one side h̃−1h = ϕ` fixes exactly one point, while on the other side the two elements act

like translations by 2n on their own translation axes. If the intersection was containing more than
2n points, then we would get that the quotient h̃−1h = ϕ` fixes at least two points, absurd.

Thus the intersection X(h) ∩X(h̃) actually coincides with the segment from G1gh
−1 = G1gh̃

−1

to G1g. The vertex G1 belongs to this intersection. The situation is cartooned in Figure 2.6.
The elements h and h̃ are in A(n): there exist ti’s and t̃i’s in B×1 (R′1) ∩ T1, i = 1, . . . n, such that

h = σtn · · ·σt1, h̃ = σt̃n · · ·σt̃1. (2.12)
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Given the explicit expression (2.9) for the translation axes of elements in A(n), we deduce that there
exists 0 ≤ k ≤ n such that

G1g = G1σt̃k · · ·σt̃1
(with abuse of notation, the case k = 0 corresponds to G1g = G1). Let us write temporarily
g̃ = σt̃k · · ·σt̃1 and observe that g−1G1g = g̃−1G1g̃. Therefore we can suppose that g is the initial
part of h̃, that is g = g̃ = σt̃k · · ·σt̃1. We also write ϕ` = g−1x`g, with x ∈ G1.

The product h̃ϕ` = h̃g−1x`g has therefore a “cyclic simplification”:

h̃ϕ` = σt̃n · · ·σ
(
t̃k+1x

`
)
σt̃k · · ·σt̃1, (2.13)

with
(
t̃k+1x

`
)
belonging to G1. Now, this product h̃ϕ` equals h, so we compare the expression (2.13)

above to the first expression in (2.12). From Remark 2.10, we deduce that the quotient
(
t̃k+1x

`
)
t−1
k+1

is in Z and thus x` ∈ B1(R′1)ZB1(R′1). This is a finite set that does not depend on n: there is only a
finite number of possible choices for `.

As a consequence of the results of § 2.5, we obtain the following key fact:

Corollary 2.32. Given ε0 > 0 and ψ ∈ G, there exists n = n(ψ) such that the element gψF (n)ψ−1 is
locally ε0-close to the identity in the C0 topology when restricted to a certain complex neighbourhood
of x0 ∈ NE.

Proof. Given ψ ∈ G, consider the constants C = C(ψ) and L from Propositions 2.30 and 2.31
respectively. Then the quantity

ρ
(
ψE(n)ψ−1

) cψE(n)ψ−1

SψE(n)ψ−1
≤ L

C
ρ
(
ψE(n)ψ−1

)2
a−ρ(ψE(n)ψ−1)

is certainly o(1) as n goes to ∞. Thus Proposition 2.6 applies and the sequence gψF (n)ψ−1 for
F (n) = E(n)−1E(n) converges C0 to the identity over a complex disc of size o(1/ρ

(
ψE(n)ψ−1)

)
around x0.

2.8 Step 3: Chain of commutators

Strategy – As we have already explained, Proposition 2.5 implies that if two diffeomorphisms
f1, f2 in G are ε0-close to the identity over a small interval, then the sequence of commutators
fk+2 = [fk+1, fk] must be eventually trivial, since G is locally discrete. We want to get a contradiction,
finding two elements f1 and f2 which are locally ε0-close to id, generating a free subgroup in G. The
main result in this third step is the following:

Proposition 2.33. Given ε0 > 0, there exists ψ1, ψ2 ∈ G and n such that the elements f1 =
gψ1F (n)ψ−1

1
and f2 = gψ2F (n)ψ−1

2
satisfy the following two properties:

1. they are both ε0-close to the identity in the C0 topology when restricted to a certain complex
neighbourhood of x0 ∈ NE,

2. the elements f3 = [f1, f2] and f4 = [f2, f3] generate a free group.

Before starting the proof, let us describe the general strategy. By Corollary 2.32, for any ψ1, ψ2 ∈ G
there exists n such that the elements f1 = gψ1F (n)ψ−1

1
and f2 = gψ2F (n)ψ−1

2
are both locally ε0-close

to the identity in the C0 topology when restricted to some complex neighbourhood of x0 ∈ NE. By
the ping-pong Proposition 2.24, if f1 and f2 have disjoint invariant sets, then f3 and f4 generate a
free subgroup in G, and the proof is over.
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Reduced forms for elements in F (n) – Here we consider elements in the set

F (n) = A(n) ∪A(n)−1 ∪A(n)−1A(n).

Each element in A(n) can be written in the reduced form (2.8). Also, if an element is in A(n)−1,
then its inverse is in A(n). It remains to describe the elements in A(n)−1A(n).

Lemma 2.34. Let g ∈ A(n)−1A(n) be an element which does not belong to the ball B1(3R′1) of
radius 3R′1 in G1. Then there exist elements s, t ∈ G1 and an element w ∈ G such that:

• s, t ∈ B1(R′1) \ Z,

• a reduced form representing w starts and ends with a letter in G2 \ Z,

• g = swt.

Proof. As g belongs to A(n)−1A(n), we can write g as

g = s−1
1 σ−1 · · · s−1

n σ−1σtn · · ·σt1, (2.14)

with si, ti ∈ B1(R′1) and σ ∈ G2 our fixed element. The problem is that the expression (2.14) is not
reduced: clearly the subword σ−1σ in the middle represents the identity, but there could be further
central simplifications. For this, after erasing σ−1σ, we look at the new middle subword s−1

n tn. It
represents an element in G1; if it does not belong to Z, then the expression

g = s−1
1 σ−1 · · ·σ−1(s−1

n tn)σ · · ·σt1,

is already reduced; otherwise the subword σ−1s−1
n tnσ represents an element in G2, and we have

similar further cases to analyze. Proceeding in this way, we end up with a word w such that
g = s−1

1 wt1, and there are two possibilities:

1. the element w is not in Z, and in this case we have that a reduced form representing it starts
and ends with a letter in G2 \ Z,

2. or w ∈ Z and thus g = s−1
1 wt1 ∈ B1(R′1)ZB1(R′1) belongs to the ball B1(3R′1) (the choice of

the radius R′1 implies in particular that B1(R′1) ⊃ Z).

After our assumption on g, only the first possibility may happen, whence we get the properties of
the statement, with s = s−1

1 and t = t1.

Conjugation – After the work done in the previous paragraph, we can determine the position of
the elements in ψF (n)ψ−1 for suitable choices of ψ.

Proposition 2.35. Fix x ∈ G1 \ Z and y ∈ G1 \ B1(2R′1). Consider the element ψ = xσy. Then
for any element g ∈ ψ (F (n) \B1(3R′1))ψ−1, the first letter of g is in Zx−1.

In other words, if π denotes the geodesic path going from the vertex G1 to G1g in the Bass-Serre
tree of G, then the first edge of π is (G1, G2x

−1).

Proof. As g ∈ ψF (n)ψ−1, there exists an element h ∈ F (n) such that g = ψhψ−1. We separate our
discussion into two cases:

1. the element h is in A(n) ∪A(n)−1,
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2. the element h is in A(n)−1A(n).

Suppose we are in the first situation, and suppose h ∈ A(n) (the other case being similar). We write

h = σtn · · ·σt1,

thus

g = ψhψ−1

= xσyσtn · · ·σt1y−1σ−1x−1.

We look at the subword t1y
−1 appearing in the last expression: after our assumption on y, we

have that the product t1y−1 is in G1, but it does not belong to Z, otherwise we would have
t1y
−1 ∈ Z ⊂ B1(R′1) and thus y−1 ∈ B1(R′1)B1(R′1) ⊂ B1(2R′1), against our assumption.
Hence the writing

g = xσyσtn · · ·σ(t1y−1)σ−1x−1

is in reduced form, and it clearly starts with x−1. If we consider another reduced form representing
g, then we can replace the letter x−1 by another letter in Zx−1 (see Remark 2.10).

If we are in the second situation, the previous Lemma 2.34 says that we can write h = swt, with
s, t ∈ B1(R′1) \ Z. Hence

g = ψgψ−1 = xσy swt y−1σ−1x−1.

Arguing as before, we get that both subwords ys, ty−1 are in G1 \ Z. Therefore g is represented by
the reduced form

g = ψgψ−1 = xσ(ys)w(ty−1)σ−1x−1,

and we conclude as in the previous situation.
The last statement about the geodesic π is now a direct consequence of Remark 2.10.

Corollary 2.36. Take y ∈ G1 \ B1(2R′1). If x1, x2 ∈ G1 \ Z are such that G2x
−1
1 6= G2x

−1
2 , then

letting
ψ1 = x1σy, ψ2 = x2σy,

for any
g1 ∈ ψ1

(
F (n) \B1(3R′1)

)
ψ−1

1 , g2 ∈ ψ2
(
F (n) \B1(3R′1)

)
ψ−1

2 ,

the invariant sets X(g1), X(g2) are disjoint.

Proof. It follows directly from Propositions 2.35 and 2.15.

End of the proof – We are now in position to prove Proposition 2.33.

Proof of Proposition 2.33. Consider two elements ψ1, ψ2 ∈ G given by Corollary 2.36. Given ε0 > 0
we take n such that the elements f1 = gψ1F (n)ψ−1

1
and f2 = gψ2F (n)ψ−1

2
are both ε0-close to the

identity in the C0 topology when restricted to a certain complex neighbourhood of x0, which exists
after Corollary 2.32. Since the sequences gψiF (m)ψ−1

i
do not belong to a finite set (the lengths

`ψiF (m)ψ−1
i

go to zero), up to consider a larger n, we can suppose that fi /∈ ψiG1ψ
−1
i , i = 1, 2: indeed

it is easy to see that the intersection F (n) ∩ G1 is contained in B1(3R′1) and hence is finite (see
Lemma 2.34).
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Similarly, up to consider a larger n (or ε0 smaller), we can suppose that the orders of f1 and f2
is at least 3|Z| (possibly infinite): if a periodic element locally converges to the identity, its order
must go to infinity (cf. [19, Lemma 10]).

Corollary 2.36 guarantees that the invariant sets X(f1) and X(f2) are disjoint. Then, by applying
the ping-pong Proposition 2.24 (the group G is |Z|-bounded, as in the action on its Bass-Serre tree,
stabilizers of edges are conjugates of Z), we deduce that f3 = [f1, f2] and f4 = [f2, [f1, f2]] generate
a free group of rank two, as desired.

This also completes the proof of Theorem A, as we now recall.

Summary of the proof of Theorem A – We start with G ⊂ Diffω+(S1) a locally discrete,
finitely generated subgroup with infinitely many ends, and a point x0 ∈ NE. We suppose by way of
contradiction that no nontrivial element in G fixes x0.

By Stallings’ theorem, G has a Stallings’ decomposition. Without loss of generality, we may
suppose G = G1 ∗Z G2. In § 2.3 we have seen how to rule out the case when both no factor
acts minimally. Therefore we consider the case when G1 acts minimally. Under this assumption,
Proposition 2.33 ensures the existence of elements f1, f2 ∈ G such that:

1. they are both ε0-close to the identity in the C0 topology, when restricted to a certain complex
neighbourhood of x0,

2. no iterated commutators fk+2 = [fk, fk+1] is trivial.

Then we apply Proposition 2.5 and get that the sequence fk converges to the identity in the C1

topology when restricted to a fixed neighbourhood of x0. This contradicts the hypothesis that the
group G is locally discrete.

3 Theorem B: Duminy revisited

3.1 Proof of Theorem B from Theorem C

The main purpose of this Section is to give the proof of Theorem C which is a version of Duminy’s
theorem in the context of minimal actions satisfying property (?). Theorem B will be then an easy
consequence:

Proof of Theorem B. Let G ⊂ Diffω+(S1) be a group with property (?). If the set of non-expandable
points NE = NE(G) is empty, then Deroin’s Theorem 1.28 implies that G is Cω conjugate to a finite
central extension of a cocompact Fuchsian group.

If G has an exceptional minimal set, then Ghys’ Theorem 1.21 implies that G is virtually free.
Therefore, we are left to suppose that G acts minimally with non-expandable points. In this

case we apply Theorems C and D: this gives that the groupoid of one-sided germs Gx0 has infinitely
many ends.

On the other hand, the analyticity of the action implies that any germ uniquely determines an
element of the group G: the groupoid of germs Gx0 coincides with the group G. Thus if Gx0 has
infinitely many ends, so does G. Since G has property (?) and NE is not empty, we apply Theorem A
and get that in the latter case G is virtually free.
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3.2 Warm up: Duminy’s theorem in analytic regularity

Duminy’s result deals with pseudogroups of class C2 that act on the circle with exceptional
minimal sets (a proof can be found in [35, §3]). Here we discuss the case of finitely generated groups
of real-analytic diffeomorphisms. In this context, we provide a relatively short proof which illustrates
the core of the proof of Theorem C.

Theorem 3.1 (Duminy – Cω case). Let G ⊂ Diffω+(S1) be a finitely generated group acting on S1

with an exceptional minimal set Λ. Let J0 be a connected component of S1 \ Λ (a “gap”). Then the
Schreier graph Sch(X,G) of the orbit of gaps X = G · J0 has infinitely many ends.

This implies that the group G itself has infinitely many ends.

Proof. We will prove that if the conclusion fails to be true, then G preserves an affine structure on
S1. This is done by using control of the affine distortion of well chosen maps. The relevant tool to
do this is the nonlinearity of a diffeomorphism of the line: If f : I→ J is a C2 diffeomorphism of one
dimensional manifolds, let

N (f) = f ′′

f ′
.

The nonlinearity of a map vanishes if and only if the map is affine. Moreover, this nonlinearity
operator satisfies the cocycle relation

N (f ◦ g) = g′N (f) ◦ g +N (g). (3.1)

The first step of the proof is to use the nonlinearity to find a criterion for distinguishing different
ends in the Schreier graph Sch(X,G). Remind that the stabilizer of J0 is generated by some h ∈ G
(cf. Theorem 1.2). We set b =

∫
J0
N (h).

Proposition - Definition. Assume we are under the hypotheses of Theorem 3.1. The function

N : X −→ R/bZ
g(J0) 7−→

∫
J0
N (g) (3.2)

is well defined along the orbit X, and verifies

N(f(J)) = N(J) +
∫
J
N (f) for all J ∈ X and all f ∈ G. (3.3)

Proof. If two elements g1 and g2 are such that g1(J0) = g2(J0), then there exists some k ∈ Z such
that g2 = g1h

k. To verify that the function N is well defined, we have to show that for a fixed g ∈ G,
all the integrals

∫
J0
N (ghk) are equal modulo bZ.

Using the cocycle relation (3.1) and the change of variable formula, we have

∫
J0
N (ghk) =

∫
J0

(hk)′N (g) ◦ hk +
k−1∑
i=0

∫
J0

(hi)′N (h) ◦ hi

=
∫
hk(J0)

N (g) +
k−1∑
i=0

∫
hi(J0)

N (h),

which is equal to
∫
J0
N (g) + k

∫
J0
N (h) =

∫
J0
N (g) + kb. This proves the first assertion. The

relation (3.3) can be verified in a similar way.
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If f is written in the form f = gn · · · g1 in the generating system G, then similarly to (2.2) we
obtain the bound

|N(f(J))−N(J)| ≤ CG
n−1∑
i=0
|gi · · · g1(J)| (3.4)

with respect to the same constant CG := maxg∈G∪G−1 supS1 |g′′/g′|. From this fact it is not difficult
to prove the following lemma which provides a criterion to distinguish ends of the Schreier graph of
J0. It is close to the original ideas of Duminy; see for example [35, Lemma 3.4.2]. Recall that the
ends, and the fact that a sequence converges to a certain end, are independent of the finite system
of generators of the group.

Lemma 3.2. Assume we are under the hypotheses of Theorem 3.1.

i. If (Jn)n∈N is a sequence of gaps which goes to an end in the Schreier graph Sch(X,G), then
limn→∞N(Jn) exists.

ii. If (In)n∈N and (Jn)n∈N determine the same end in the Schreier graph Sch(X,G), then

lim
n→∞

N(In) = lim
n→∞

N(Jn).

Proof. It is enough to prove the first assertion for Jn = gn · · · g1(J0), where (gn)n∈N is a sequence of
elements of the (symmetric) system of generators of G. To do this, notice that (3.4) easily shows
that the sequence (N(Jn))n∈N is a Cauchy sequence, and hence converges.

To show the second assertion, given ε > 0, let n0 be such that
∑
J /∈X(n0) |J | < ε, where X(n0)

denotes the set of those x ∈ X at distance no greater than n0 to J0 for the word distance in X. If n
is large enough, there exists a path linking In and Jn which avoids X(n0). A direct application of
(3.4) yields |N(In)−N(Jn)| < εCG . Since ε is arbitrary, this concludes the proof.

From now on, we suppose that Sch(X,G) has only one end and look for a contradiction. The
general case when the Schreier graph has finitely many ends can be treated similarly, as we detail
along the proof of Lemma 3.18.

The second step relies on Sacksteder’s theorem: there exists a local hyperbolic contraction,
i.e. f ∈ G, I ⊂ S1 and p ∈ I with f ′ < 1 on I and f(p) = p. Using Sternberg’s (or in this case
Kœnigs-Poincaré’s) linearization theorem, we can make a Cω change of coordinates on I and suppose
that f is a homothety of ratio µ = f ′(p).

A way to describe an end of Sch(X,G) is to pick some gap J ⊂ I ∩G · J0 and iterate it by f .
Using the cocycle relation (3.3), we find

lim
n→∞

N(fn(J)) = N(J), (3.5)

for f is affine and thus its nonlinearity is 0.
We want to prove that if there is one only end in Sch(X,G), in this chart we have affine holonomy:

every element γ ∈ G satisfying Iγ = γ−1(I)∩ I 6= ∅ has to be an affine map. Note that by minimality
of Λ, the union of gaps Iγ ∩G · J0 is dense in Iγ . So let J ⊂ Iγ ∩G · J0 be a gap. Since J ⊂ Iγ , we
also have γ(J) ⊂ I.

If γ ∈ G maps J inside I and is not a power of f , then the iterates of γ(J) by f also go towards
the one only end of Sch(X,G) and after (3.5) we must have N(J) = N(γ(J)). Using (3.3) again, the
latter implies

∫
J N (γ) = 0 (supposing the gap J sufficiently small, cf. the proof of Lemma 3.18).

We have just shown that the mean nonlinearity of γ over every sufficiently small gap in Iγ ∩G ·J0
vanishes. By continuity, there is a point xJ in every such gap J , at which the nonlinearity N (γ) is
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zero. Observe that the points xJ accumulate on Λ ∩ Iγ . By the analytic continuation principle, γ is
affine on S1.

We remark that a subgroup of automorphisms of some affine structure on S1 must have a finite
number of globally periodic points and thus cannot preserve a Cantor set, leading to a contradiction.
Therefore, the Schreier graph Sch(X,G) has infinitely many ends.

It remains to show that the group itself has infinitely many ends. This requires some additional
work: the map π : g ∈ G 7→ g(J0) ∈ X defines a non-regular covering from G (actually from its Cayley
graph) to the the Schreier graph Sch(X,G). The number of leaves usually does not well-behave when
passing to covering spaces, unless the nontrivial monodromy of the covering is compactly supported.

The following lemma is somehow classical in foliation theory (see [4, Corollary 4.8]):

Lemma 3.3. Assume we are under the hypotheses of Theorem 3.1. There exists ε > 0 such that the
following holds. Consider a gap J in the orbit of J0. Let g ∈ G be an element that stabilizes J and
suppose that g can be written in the form g = gn · · · g1 in the generating system G. Suppose that the
intermediate images of the gap satisfy

n−1∑
i=0
|gi · · · g1(J)| < ε.

Then g is the identity.

Finally, arguing as in [21, Corollaire 2.6], we can deduce that the group G has infinitely many
ends. Indeed, consider the class of the loop defined by the stabilizer h ∈ StabG(J0) in the fundamental
group π1(Sch(X,G), J0). After Lemma 3.3, it defines a nontrivial element in the image of the natural
morphism H1

c (Sch(X,G),Z)→H1(Sch(X,G),Z). The covering π : G→ Sch(X,G) is exactly the
covering associated with this element. We deduce that G has infinitely many ends.

Strategy of the proof of Theorem C – In the setting of minimal actions with non-expandable
points, the strategy we adopt is similar to that of the proof of Duminy’s theorem described above.

However, in our setting, it is not an invariant affine structure, but an invariant projective structure
that we intend to build. The relevant quantity is no longer the nonlinearity, but the Schwarzian
derivative of diffeomorphisms of one-dimensional manifolds.

The first step of the proof will be to use a control of the projective distortion. Instead of using
gaps of Cantor sets, we substitute them by considering the orbit of a non-expandable point x0 ∈ NE.
The control of the distortion is ensured by taking advantage of the Markov partition for groups
acting minimally with property (?), whose construction we recall in § 3.3.

This allows to define a function Q on the Schreier graph X of x0, that we call the Schwarzian
energy and is analogue to (3.2). As for the function N , the Schwarzian energy has a well-defined
extension to the space of ends e(X) of the Schreier graph of x0 (Lemma 3.16).

Secondly, we first suppose that the Schwarzian energy takes only finitely many values on e(X).
We obtain an intermediate result, that it is interesting on its own: the group is Cr conjugate to
a subgroup of some finite covering of PSL(2,R) (Theorem 3.17). The strategy follows the lines of
our proof of Duminy’s Theorem. As above we take an element with a hyperbolic fixed point; using
Sternberg’s linearization theorem, this allows one to construct a chart with projective holonomy (see
Lemma 3.18). Using the minimality of the action, we extend this chart to a projective structure: this
is Lemma 3.19. Finally, relying on Kuiper-Goldman’s classification of the automorphisms groups of
a projective structure on S1, we find that the group is virtually a discrete subgroup of PSL(2,R),
with non-expandable points, and thus virtually free.

Finally, we put all the pieces together and prove Theorem C in § 3.6
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Strategy of the proof of Theorem D – We suppose that the orbit of any non-expandable point
has infinitely many ends. We prove the analogue of Lemma 3.3 for groups with (?), and deduce that
if the Schreier graph of the orbit of x0 has infinitely many ends, then also the groupoid of one-sided
germs Gx0 does.

3.3 Markov partition and expansion procedure

Markov partition – We recall one result of [18] in the case of minimal actions:

Theorem 3.4 (Filimonov, Kleptsyn). Let G ⊂ Diff2
+(S1) be a finitely generated group whose action

is minimal and with property (?). Let ` be the number of non-expandable points of G, and write
NE = {x1, . . . , x`}. Then there exists a partition of the circle S1 into finitely many open intervals

I =
{
I1, . . . , Ik, I

+
1 , I

−
1 , . . . , I

+
` , I

−
`

}
,

an expansion constant λ > 1 and elements gI ∈ G, I ∈ I such that:

i. for every I ∈ I, the image gI(I) is a union of intervals in I;

ii. we have g′I |I ≥ λ for every I = I1, . . . , Ik;

iii. the intervals I+
i and I−i are adjacent respectively on the right and on the left to the non-

expandable xi, which is the unique fixed point, topologically repelling, for gI+
i

(resp. gI−i ) on the
interval I+

i (resp. I−i ); moreover xi is the unique non-expandable point in gI±i (I±i );

iv. for every I = I±1 , . . . , I
±
` , set

kI : I −→ N

to be the function kI(x) = min{k ∈ N | gkI (x) 6∈ I} and

j : I −→ {1, . . . , k}

defined by the condition gkI(x)
I (x) ∈ Ij(x). Then for every x ∈ I,

(
gIj(x) ◦ g

kI(x)
I

)′
(x) ≥ λ.

Remark 3.5. If we assume moreover that G is in Diffω+, then iv above can be reformulated as follows:
if kI(x) = min{k ∈ N | gkI (x) /∈ I}, then for every x ∈ I one has

(
g
kI(x)
I

)′
(x) ≥ λ.

Indeed, as gI is a parabolic stabilizer one of the endpoints xI (say the leftmost one) of the interval
I, there exist A,B > 0 and n ≥ 1 an integer such that

gI(x) = x (1 +A(x− xI)n + o((x− xI)n)) for every x ∈ I, as x→xI (3.6)

and
g′I(x) = 1 +B(x− xI)n + o((x− xI)n) for every x ∈ I, as x→xI . (3.7)

Therefore the derivative of gI is never less than one on a small right neighbourhood of xI . This fact
will be crucial in our proof of Theorem D.
Remark 3.6. It is worthwhile to observe that Theorem B was first conjectured in [19] as a moral
consequence of Theorem 3.4: the (non-uniformly) expanding maps gI ’s give a way to decompose
the Schreier graphs of all but finitely many orbits into a finite number of trees [18], thus suggesting
freeness in the structure.
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Magnification maps – From now on, we fix a Markov partition

I =
{
I1, . . . , Ik, I

+
1 , I

−
1 , . . . , I

+
` , I

−
`

}
,

an expansion constant λ > 1 and elements gI ∈ G, I ∈ I given by Theorem 3.4. We also denote
by ∆0 the set of endpoints of atoms of the partition I. We introduce a first magnification map
R : S1 \∆0→S1 defined as

R|I = gI for any I ∈ I, (3.8)

and its modification R̃ : S1 \∆0→S1 defined as

R̃|I : x ∈ I 7→

gI(x) if I ∈ {I1, . . . , Ik}
gIj(x)g

kI(x)
I if I ∈

{
I±1 , · · · , I

±
`

} , for any I ∈ I, (3.9)

which, after Theorem 3.4.iv above, is uniformly expanding: R̃′(x) ≥ λ for any x ∈ S1 \∆0.
The following result will be very helpful during the proof of Theorem D:

Lemma 3.7. Assume we are under the hypotheses of Theorem 3.4 and suppose moreover that
G ⊂ Diffω+(S1). Then the magnification map R can be chosen to be everywhere expanding:

R′(x) > 1 for every x ∈ S1 \∆0.

Proof. The magnification map is piecewise defined by (3.8).
However, it depends on the construction of the collection I in Theorem 3.4. The proof in [19]

starts first by fixing neighbourhoods I±j of the non expandable points {x1, . . . , x`}, then subdividing
the rest of the circle into intervals Ij . Taking smaller neighbourhoods I±j has usually the result of
decreasing the expansion constant λ > 1.

If I is one of the I±j , then we have seen in Remark 3.5 that R|I = gI |I is of the form (3.6),
and its derivative of the form (3.7). Hence, shrinking I a little in Theorem 3.4, we may assure
(R)′|I = g′I |I > 1.

On the other hand, if I ∈ I is one of the Ij , then we already have a good expansion by
construction: R′|I ≥ λ after Theorem 3.4.ii.

Partitions of higher level – In order to encode the dynamics within the orbit of the set of
non-expandable points, it is appropriate to define subpartitions of I. We define the endpoints of the
atoms of the partition of level k by the following inductive procedure, starting from the set ∆0 of
endpoints of atoms of the partition I. If ∆k is constructed, consider ∆k(I) = ∆k ∩ I, where I ∈ I,
so that ∆k =

⋃
I∈I ∆k(I). We distinguish two possibilities:

• if I is not adjacent to a non-expandable point, set

∆k+1(I) = g−1
I (∆k ∩ gI(I));

• for I ∈ I adjacent to one of the non-expandable points, set

∆k+1(I) =
∞⋃
j=1

g−jI (∆k ∩ (gI(I) \ I)).

Definition 3.8. The connected components of S1 \∆k form a partition called the partition of level
k that we denote by Ik.
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Expansion of a non-expandable point – We start by the following result describing the orbits
of non-expandable points (see for instance [35, Lemma 3.5.14]).

Lemma 3.9. Let G ⊂ Diff2
+(S1) be a finitely generated group whose action is minimal and satisfies

property (?). Then a point x ∈ S1 belongs to the orbit of a non-expandable point if and only if the
set {g′(x) | g ∈ G} is bounded.

The tool of the proof is a process of expansion that we describe below. Assume that x ∈ G ·NE.
There exists k(x) ∈ N ∪ {∞} and a sequence of k(x) points (xi)k(x)

i=0 ⊂ G · NE, that we call the
expansion sequence of x and is defined recursively as follows. First, set x0 = x. Now assume that xi
has been constructed. Then there exists I ∈ I such that xi ∈ Ī (if xi is one of the endpoints of I,
one can always ask that it is the left one). Then we have three mutually exclusive possibilities:

• if xi ∈ NE, then the procedure stops and k(x) = i;

• if I is not adjacent to a non-expandable point, we set xi+1 = gi+1(xi), where gi = gI ;

• if the right endpoint of I is a non-expandable point we set xi+1 = gi+1(xi), where gi+1 =
gIj(xi)g

kI(xi)
I . Here kI and j are the numbers defined in Theorem 3.4.

In other words, if the point xi is not non-expandable, we set xi+1 = R̃(xi), where R̃ is the expanding
magnification map introduced at (3.9).

If the procedure never stops we can set k(x) =∞, though it turns out that this possibility never
occurs:

Proposition 3.10. Let G ⊂ Diff2
+(S1) be a finitely generated group whose action is minimal,

satisfies property (?) and such that NE 6= ∅. Let x ∈ G ·NE. Then the following assertions hold true.

i. There exists a finite integer k = k(x), called the level of x, such that the procedure stops after k
steps.

ii. Let gx denote the composition gk gk−1 · · · g1 (locally equal to R̃k). By construction gx(x) = xk
belongs to NE and is the leftmost point of some I+

j(xk). Define the interval J+
x = g−1

x (I+
j(xk)),

whose leftmost point is x. Then there exists a number κ = κ(x) ≥ k such that J+
x is an atom of

Iκ, the partition of level κ.

iii. There exists a constant C0 > 0 which does not depend on x ∈ G ·NE such that κ(gx, J+
x ) ≤ C0.

Proof. We observe that the expanding property of the magnification map R̃ imply that the derivatives
of the compositions gj gj−1 · · · g1 = R̃j are always larger than λj . Since x ∈ G ·NE, by Lemma 3.9,
(R̃j)′(x) has to be bounded. This is possible if and only if the expansion procedure described above
stops at some step k.

That the intervals J+
x are atoms of the partition of some level κ is clear from the definition of

the two procedures.
The map gx is precisely the expansion map R̃k(x) of J+

x , in the sense of [18, Definition 7].
Thus, the third assertion follows from [18, Proposition 2] and because the size of the intervals
gi · · · g1(J+

x ) = R̃j(J+
x ) is uniformly bounded from below.

Lemma 3.11. The following assertions hold true.

i. The family (J+
x )k(x)=k consists of disjoint intervals.
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ii. There exists a constant C > 1 which does not depend on x ∈ G ·NE such that

C−1

|J+
x |
≤ g′x(x) ≤ C

|J+
x |
.

Proof. By Proposition 3.10.ii, each interval J+
x is an atom of some partition of level κ(x). This

implies that two different intervals J+
x either are disjoint, or one is contained into the other.

Assume for example that J+
x contains J+

y for some x, y ∈ G ·NE. Then we claim that k(x) < k(y).
Indeed, the maps gi defined by the expansion procedure of x and y must coincide at least before the
procedure stops for x. It stops for x when i = k, and x = xk. Then gx(y) = yk lies strictly inside
I+
j(xk), which contains no non-expandable point. Hence, the expansion procedure of y must continue
after the k-th step, and we have k(x) < k(y) as desired.

The second assertion directly follows from Proposition 3.10.iii.

In the final part of the proof of Theorem C, we will also need a second important result from [18]:

Theorem 3.12 (Filimonov, Kleptsyn). Let G ⊂ Diff2
+(S1) be a finitely generated group whose

action is minimal and with property (?). Let I be the partition of S1 given by Theorem 3.4, with the
associated expanding maps gI ’s. There exists a finite number of interval L1, . . . LN , L

′
1, . . . L

′
N and

maps hi : Li→L′i, such that any element g ∈ G admits the following representation:

i. there is a partition of the circle into intervals J1, . . . , Jq which depends on g;

ii. for any p = 1, . . . , q there exist intervals Lip , L′ip in the expansion sequences of the intervals Jp
and g(Jp) respectively. In other words for some np, n′p one has

Rnp(Jp) = Lip , Rn′p(g(Jp)) = L′ip ;

iii. The map g equals hip under magnification:

g|Jp = R−n′phipRnp . (3.10)

Moreover, the partition J1, . . . , Jq can be chosen to be the same for any finite set of elements in G.

Remark 3.13. Observe that the property (3.10) implies that the maps hi : Li→L′i are the restriction
of elements in G. Therefore with abuse of notation, we can consider the maps hi’s to be elements in
G, and in particular defined on the whole circle.

3.4 Distinguishing different ends: control of the projective distortion

We assume that G has property (?) and that there exists x0 ∈ NE. Our goal is to show that G
has infinitely many ends: here we present a criterion to distinguish two different ends.

Distortion control – From [18, Lemma 5] we have:

Lemma 3.14. The stabilizer StabG(x0) (in the C2 setting, considered as the group of one-sided
germs) is an infinite cyclic group, generated by some h ∈ G.
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We introduce a function E : X→(0, 1], that we will call the energy (and which is, in fact, the
inverse of the function defined in [18]), defined on the orbit X = G · x0 as

E(g(x0)) = g′(x0) for every g ∈ G. (3.11)
The map is well-defined. Indeed, assume that x = g1(x0) = g2(x0) for g1, g2 ∈ G. Then the
element g−1

2 g1 fixes x0. Since this point is non-expandable, we must have (g−1
2 g1)′(x0) = 1, hence

g′1(x0) = g′2(x0).
Lemma 3.15. The series

∑
x∈X E(x)2 converges.

Proof. Let x ∈ X, and let gx be the map obtained in Proposition 3.10. We have E(x) = g′x(x)−1. By
Lemma 3.11, the ratio between E(x) and |J+

x | is uniformly bounded away from 0 and ∞. Therefore,
it is enough to prove that the series

∑
x∈X |J+

x |2 is convergent.
We can decompose this sum as

∞∑
k=0

∑
k(x)=k

|J+
x |2 ≤

∞∑
k=0

( max
x : k(x)=k

|J+
x |
) ∑
k(x)=k

|J+
x |

 . (3.12)

We first note that |J+
x | can be controlled by a term of the order of λ−k(x), because by construction

we have g′x(x) ≥ λk(x).
Using Lemma 3.11, we get the following inequality holding for every k ∈ N:∑

k(x)=k
|J+
x | ≤ |S1| = 1.

This suffices to prove that the upper bound in (3.12) is controlled by a converging geometric sum.

The Schwarzian energy – If f ∈ Diff3
+(S1), we consider its Schwarzian derivative given by the

classical expression

S(f) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
.

We have the following cocycle formula:
S(f ◦ g) = (g′)2 · S(f) ◦ g + S(g). (3.13)

Recall that the stabilizer of x0 is generated by some h ∈ G, which moreover verifies h′(x0) = 1; we
set b = S(h)(x0). From this we can define a new function on the orbit X of x0:
Proposition - Definition. The Schwarzian energy is the function

Q : X −→ R/bZ
g(x0) 7−→ S(g)(x0) (3.14)

(where the quotient R/bZ can possibly be R, if b = 0).

Proof. We follow the arguments previously given for the function N . We have to check that the
function Q is well-defined. Assume that x = g1(x0) = g2(x0) for some g1, g2 ∈ G. By Lemma 3.14,
we have g1 = g2h

k for some k ∈ Z. Using the cocycle relation (3.13) and the fact that h′(x0) = 1, we
find

S(g1)(x0) = S(g2)(x0) + k S(h)(x0).
which is equal to S(g2)(x0) (mod b).

An immediate corollary of (3.13) is
Q(f(x)) = E(x)2 · S(f)(x) +Q(x). (3.15)
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Extension to the space of ends – The following lemma provides a criterion to distinguish ends
of the Schreier graph of the orbit of x0, that we identified with the orbit X.

Lemma 3.16.

i. Let (xn)n∈N be a sequence of points in X which goes to an end. Then limn→∞Q(xn) exists.

ii. If (xn)n∈N, (yn)n∈N determine the same end in X, then

lim
n→∞

Q(xn) = lim
n→∞

Q(yn).

Proof. It goes like the proof of Lemma 3.2, but we detail it for the sake of clarity. Consider a sequence
of the form xn = gn · · · g1(x0), where (gn)n∈N is a sequence of elements of the (symmetric) system of
generators of G.

Using (3.15), we get
Q(xn+1)−Q(xn) = E(xn)2 · S(gn+1)(xn).

Using Lemma 3.15 and an upper bound for the Schwarzian derivatives of the generators, we easily
get that the sequence (Q(xn))n∈N is a Cauchy sequence, and hence converges.

We have the convergence of the sequence (Q(xn)−Q(yn))n∈N, and we have to prove that the
limit is 0 in the case where xn and yn converge to the same end. Let ε > 0 and n0 such that∑
x/∈X(n0) E(x)2 < ε, where X(n0) denotes the set of those x ∈ X at distance no greater than n0 to

x0 for the word distance in X.
Assume that xn and yn converge to the same end. When n is large enough, there exists a path

linking xn and yn which avoids X(n0). Using the same type of argument as above, we get that
|Q(xn)−Q(yn)| is smaller than ε times a uniform constant which only depends on the system of
generators. Since ε is arbitrary, this concludes the proof of the lemma.

As a consequence, the function Q defined in (3.14) extends to the space of ends e(X) of X. With
abuse of notation, we keep denoting by Q this extension.

3.5 Invariant projective structure

Within this section, we will assume that the Schwarzian energy Q takes finitely many values on
the space of ends e(X). In particular, this holds if the Schreier graph of x0 has finitely many ends,
but we will show that this is never the case. The goal is to produce a projective structure which is
invariant for the action of G.

Theorem 3.17. Let G ⊂ Diffr+(S1), r ≥ 3, be a finitely generated group of Cr diffeomorphisms, such
that the action of G is minimal, has property (?) and a non-expandable point x0 ∈ S1. Suppose that
the Schwarzian energy Q defined on the Schreier graph Sch(X,G) of the orbit X of the non-expandable
point x0 ∈ NE takes finitely many values on the space of ends of X. Then G is Cr conjugate to a
subgroup of some finite covering of PSL(2,R).

In particular, the Schreier graph X has infinitely many ends and the group G is virtually free.

A projective chart – We begin by the construction of a single projective chart. We will next use
the minimality of the action to construct a projective atlas.

The action of G on S1 is at least C2, minimal and does not preserve any probability measure.
Then Sacksteder’s theorem (Theorem 1.6) applies: the group G acts on S1 with hyperbolic holonomy.
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More precisely, there exists a point p ∈ S1 and an element f ∈ G with f(p) = p and µ = f ′(p) < 1.
Sternberg’s linearization theorem [35, Section 3.6.1] provides an interval I about p, as well as a
Cr-diffeomorphism ϕ : (I, p)→(R, 0), with ϕ(p) = 0 and

ϕf ϕ−1 = hµ,

where hµ denotes the homothety x 7→ µx.

Lemma 3.18 (Projective holonomy). Assume that the Schwarzian energy Q takes finitely many
values on the space of ends of Schreier graph of x0 has finitely many ends. Then the chart (I, ϕ) has
projective holonomy. More precisely, for every γ ∈ G such that J = γ−1(I) ∩ I 6= ∅, the following
equality holds on ϕ(J):

S(ϕγϕ−1) = 0.

Proof. Assume that Q takes finitely many values on the space of ends ofX. It comes from Lemma 3.16
that for every x ∈ I ∩X, the limit limn→∞Q(fn(x)) exists and there is a finite set q = {q1, . . . , q`}
such that

lim
n→∞

Q(fn(x)) ∈ q + bZ.

Now let x = g(x0) ∈ I ∩X. Note that any homothety has zero Schwarzian derivative. Hence, the
cocycle relation (3.13) implies the following equality:

Q(fn(x)) =S(ϕ−1 hnµ ϕg)(x0)
=µ2n(ϕg)′(x0)2 · S(ϕ−1)(µnϕg(x0)) + S(ϕg)(x0).

Letting n go to infinity, we find limn→∞Q(fn(x)) = S(ϕg)(x0). The latter shows that for every
g ∈ G satisfying g(x0) ∈ I, we have that the Schwarzian derivative S(ϕg)(x0) belongs to the discrete
set q + bZ.

Now consider a holonomy map of I, i.e. an element γ ∈ G satisfying J = γ−1(I) ∩ I 6= ∅. Note
that by minimality, the set J ∩ X is dense in J . So let x ∈ J ∩ X: we can write x = g(x0) for
some g ∈ G. Since x ∈ J , we also have γg(x0) = γ(x) ∈ I. We deduce that both S(ϕg)(x0) and
S(ϕγg)(x0) are in q + bZ. By (3.15), their difference is

S(ϕγg)(x0)− S(ϕg)(x0) = ϕ′(x)2 E(x)2 · S(ϕγϕ−1)(ϕ(x)) ∈ q − q + bZ.

The set q − q + bZ is discrete in R and contains 0, so there is δ > 0 such that if∣∣∣ϕ′(x)2 E(x)2 · S(ϕγϕ−1)(ϕ(x))
∣∣∣ < δ

then ϕ′(x)2 E(x)2 · S(ϕγϕ−1)(ϕ(x)) = 0. Since ϕ′(x)2 E(x)2 > 0, the latter condition implies
S(ϕγϕ−1)(ϕ(x)) = 0.

By compactness, there is M > 0 such that

sup
J

∣∣∣(ϕ′)2 · S(ϕγϕ−1) ◦ ϕ
∣∣∣ ≤M.

Consider the set X ′ of points x ∈ X such that E(x)2 < δ
M , which contains all but finitely many

points of X. The condition that points in X ′ ∩ J verify implies that S(ϕγϕ−1)(ϕ(x)) = 0 for every
x ∈ X ′ ∩ J . Since the orbit X ∩ J is dense in J , so is X ′ ∩ J . Hence, the Schwarzian derivative of
ϕγ ϕ−1 vanishes on a dense set of ϕ(J), which implies that ϕγ ϕ−1 is projective on ϕ(J).
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Invariant projective structure – By compactness of S1 and minimality of the action of G,
there exists a finite number of open intervals (Ij)mj=1 and a finite number of elements of the group
(gj)mj=1 such that:

1. the family (Ij)mj=1 is an open cover of S1,

2. for every j = 1, . . . , k, we have gj(Ij)⊂ I.

Lemma 3.19 (Invariant projective structure). For j = 1, . . . ,m, we set ϕj = ϕ ◦ gj : Ij→R.

i. The atlas (Ij , ϕj)mj=1 defines a projective structure on S1, i.e. for every j, k with Ij ∩ Ik 6= ∅, we
have:

S(ϕkϕ−1
j ) = 0.

ii. The projective structure is G-invariant, i.e. for every g ∈ G and j, k satisfying g−1(Ik)∩ Ij 6= ∅,
we have:

S(ϕk g ϕ−1
j ) = 0.

Proof. For every g ∈ G, when g−1(Ik) ∩ Ij 6= ∅, the map gkgg−1
j is a holonomy map of I.

Hence, this lemma is a direct application of the fact that (I, ϕ) has projective holonomy (see
Lemma 3.18).

Projective structures on the circle – On the circle, there is a canonical projective structure
which is given by that of RP1, and whose group of automorphisms is PSL(2,R).

For a general projective structure we have the following result originally due to Kuiper, but
whose proof contained a little mistake corrected by Goldman (see [24,25,29] and [34], it also appears
in [22, Lemme 5.1]):

Theorem 3.20 (Kuiper–Goldman). If the group of orientation preserving automorphisms of a Cr
projective structure is not abelian, then it is Cr conjugate to some finite covering of PSL(2,R).

Let us explain the main lines of the proof. In what follows, we denote by Γ the group of
orientation preserving automorphisms of a projective structure on S1. We also denote by S̃1 and
R̃P

1
the universal covers of S1 and RP1 respectively. The central extension

0→Z ι→ Γ̃→Γ→ 1. (3.16)

defines the lift Γ̃ of Γ to the universal cover S̃1. The injective homomorphism ι : Z→ Γ̃ is such that
the quotient S̃1/ι(Z) is diffeomorphic to S1. Similarly, we have that the universal cover P̃SL(2,R) of
PSL(2,R), defined by the central extension

0→Z→ P̃SL(2,R)→PSL(2,R)→ 1,

acts on R̃P
1
.

We defined a Cr projective structure on S1 as an atlas (Ij , ϕj)mj=1 of projective charts. An
equivalent way of defining it is by the data of a developing-holonomy pair (dev, hol). Here hol is an
injective homomorphism hol : Γ̃→ P̃SL(2,R), called the holonomy representation, and dev : S̃1→ R̃P

1

is a local diffeomorphism of class Cr, called the developing map, which is Γ̃-equivariant: dev ◦ γ =
hol(γ) ◦ dev for every γ ∈ Γ̃. The developing map, which is well-defined up to a post-composition by
an element of P̃SL(2,R), globalizes the projective charts, and the holonomy representation globalizes
the transition maps.

Observe that since ι(Z) is central in Γ̃, the centralizer of hol ◦ ι(Z) in P̃SL(2,R) contains the
whole image hol(Γ̃). Moreover we have the following elementary fact:
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Lemma 3.21. The centralizer of a non-central element of P̃SL(2,R) is abelian.

One deduces that if Γ̃ is not abelian, the element hol ◦ ι(1) is central in P̃SL(2,R) and so it must
be an automorphism of the universal covering R̃P

1
→RP1. Finally one has dev(S̃1) = R̃P

1
, and dev

descends to a diffeomorphism between S1 and some k-fold covering of RP1 that conjugates Γ to
PSL(k)(2,R). In order to see that the conjugacy is Cr, notice that it is given by the developing map,
which is Cr because the projective charts are of class Cr.

Proof of Theorem 3.17 – The projective structure we constructed in Lemma 3.19 cannot have an
abelian group of automorphism, since G realizes as a subgroup and is not abelian. Hence, the group
of automorphism of our invariant projective structure has to be conjugate to some finite covering
PSL(k)(2,R) of PSL(2,R). We conclude that G is Cr conjugate to a subgroup of PSL(k)(2,R), and
this subgroup is discrete in PSL(k)(2,R) for G is locally discrete. This immediately gives the desired
conclusion: by assumption, there are non-expandable points, which means that there are parabolic
elements in G, hence G is virtually the fundamental group of a hyperbolic surface with non-empty
boundary and so virtually free and with infinitely many ends.

3.6 Proof of Theorem C

Here we summarize all the work done so far in this section and prove Theorem C. Consider a
finitely generated subgroup G ⊂ Diffr+(S1), r ≥ 3, which acts minimally, possesses property (?), and
has at least one non-expandable point x0. Consider the Schwarzian energy Q defined on the Schreier
graph Sch(X,G) of the non-expandable point x0, as in (3.14). Recall that Lemma 3.16 ensures that
the function Q has a well-defined extension on the space of ends e(X) of the Schreier graph of X.

If Q takes only finitely many values on e(X), we deduce from Theorem 3.17 that X has infinitely
many ends and the group G is virtually free. Otherwise, Q takes infinitely many values and this
implies that X has infinitely many ends.

3.7 Ends of the groupoid of germs

The main purpose of this section is to prove Theorem D about the number of ends of the grupoid
of germs Gx0 . The proof relies on the following analogue to Lemma 3.3 (even though we have to
“discard” some ends of X):

Proposition 3.22. Assume we are under the hypotheses of Theorem D. There exists a finite set
X ′ ⊂ X such that for at least an infinite connected component C of the complement X \ X ′ the
following holds.

Consider a point x ∈ C in the orbit of x0 ∈ NE. Let g ∈ G be an element that fixes x and suppose
that g can be written in the form g = gn · · · g1 with respect to the generating system G. Suppose that
the intermediate images of x satisfy gi · · · g1(x) ∈ C, for any i = 1, . . . , n. Then g is the identity in
restriction to a neighbourhood of x.

We postpone the proof of Proposition 3.22, since we first need a few preliminary lemmas.
Remark 3.23. It is possible that within the standing assumption of real-analytic regularity, the proof
can be largely simplified. Here we want to provide a strategy that relies on this assumption as least
as possible, hoping that Theorem D can be generalized to C2 regularity (our Conjecture 1.22). The
essential property we use of Cω regularity is given by Lemma 3.7, namely the magnification map R
is always expanding.
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A particular case – We begin by proving the proposition under the stronger assumption that
the sum of the energies is sufficiently small: this condition is analogue to the condition of small sum
of length in Lemma 3.3.

Lemma 3.24. There exists δ > 0 with the following property: let g ∈ G be an element that fixes x
and suppose that g can be written in the form g = gn · · · g1 with respect to the generating system G.
Suppose that the intermediate images of x satisfy

n−1∑
i=0
E(gi · · · g1(x)) < δ. (3.17)

Then g is the identity in restriction to a neighbourhood of x.

Proof. Note that if (3.17) is satisfied then for the sum of the intermediate derivatives we have

n−1∑
i=0

(gi · · · g1)′(x) =
∑n−1
i=0 E(gi · · · g1(x))

E(x) <
δ

E(x) .

We consider the restriction of g to right neighbourhood J+
x in the partition of level κ(x) given

by Proposition 3.10.ii (we can proceed in a similar way with the left neighbourhood J−x ).
Recall from Lemma 3.11 and the beginning of the proof of Lemma 3.15 that the length |J+

x | is of
the same order of magnitude as E(x): there exists C > 0, which does not depend on x, such that

C−1|J+
x | ≤ E(x) ≤ C|J+

x |. (3.18)

We can apply Lemma 2.7 to have an arbitrarily good control of distortion for g on the interval J+
x :

for any δ < log 2/4CGC, Lemma 2.7 gives

κ(g; J+
x ) ≤ 4CGCδ.

Now, g′(x) = 1 because x is in the orbit of a non-expandable point. Hence g′ is close to 1 uniformly
on J+

x . In particular, there exists a constant K > 0, which does not depend on x, such that for every
z ∈ J+

x we have
|g(z)− z| ≤ K|J+

x |δ.

Similarly as for to Proposition 3.10.iii, for a sufficiently small δ we have an arbitrarily good control
of distortion for gx on [z, g(z)], hence the ratio

g′x(g(z))
g′x(z)

is uniformly close to 1. We conclude that the element g̃ = gx g g−1
x has derivative close to 1 on

gx(J+
x ). By the definition of the expanding map gx, the interval gx(J+

x ) is in the finite collection I
of Theorem 3.4. The element g̃ fixes the leftmost point of this interval.

For any interval I+
i in the collection I, we know from Lemma 3.14 that the stabilizer of its

leftmost point is cyclic, generated by the germ of some element hi. Choosing the constant δ such
that g̃ is closer to the identity on the macroscopic interval than all the hi’s on their corresponding
I+
i , we can conclude that g̃ must be the identity on a right neighbourhood of gx(x), and so is g on a
right neighbourhood of x, as desired.
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Magnification – The next lemma allows to lift our study of the stabilizer to a well-chosen
macroscopic level, without losing control of distortion.

Lemma 3.25. There exists a finite set G̃ ⊂ G and a constant C0 for which the following holds. For
any ε > 0 there exist a finite subset X ′ ⊂ X such that:

i. for any x ∈ X ′, one has E(x) ≤ ε;

ii.
∑
x∈X′ E(x) < C0;

iii. for any y belonging to an infinite connected component of X \X ′ and for any g ∈ G̃ there exist
n,m ∈ N and h ∈ G̃ such that

Rn(y),Rm(g(y)) ∈ X ′, and h(Rn(y)) = Rm(g(y));

Proof of Lemma 3.25. We will choose and fix a sufficiently large constant C and look for X ′ of the
form

X ′ = Xε :=
{
x ∈ X | C−3ε ≤ E(x) ≤ ε

}
. (3.19)

Note that as a consequence of Lemma 3.15, X ′ is a finite set. With this choice we clearly ensure
property i and we will prove that the remaining two properties are satisfied.

We first choose the finite set G̃ and focus on property iii. Take as G̃ the union of the generating
set G with the elements gI ’s given by Theorem 3.4 (locally defining R) and the elements hi’s given
by Theorem 3.12 (see also Remark 3.13):

G̃ = G ∪ {gI} ∪ {hi}.

Set
C1 := max

g∈G̃∪G̃−1
‖g′‖0.

We consider a partition J1, . . . , Jq which verifies the properties of described in Theorem 3.12, for
any g ∈ G̃ ∪ G̃−1. That is, for every g ∈ G̃ and p = 1, . . . , q the restriction g|Jp is equal to some hip
under magnification:

g|Jp = R−n′phipRnp ,

with ip, np, n′p depending on g. LetN be an integer larger than any power np, n′p in these magnifications
for the elements in G̃ ∪ G̃−1. Choose

C := max
(
C1,max

j≤N
‖(Rj)′‖0

)
to be the constant appearing in the definition (3.19). We still have to fix the good ε.

Let y be a point in an infinite connected component of X \Xε. In particular we have E(y) < C−3ε.
Take g ∈ G̃. There exist n1,m1, i1 such that g(y) = R−m1hi1Rn1(y). By our choice, the element hi1
belongs to the finite set G̃, so it also admits a magnification on an interval containing Rn1(y): there
exist n2,m2, i2 such that hi1Rn1(y) = R−(m1+m2)hi2Rn2+n1(y). Iterating this process, we obtain a
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tower of magnifications that we schematically represent by the following diagram:

Rn(y) h // Rm(g(y))

· · ·

OO

· · ·

OO

Rn2Rn1(y) h2 //

OO

Rm2Rm1(y)

OO

Rn1(y) h1 //

Rn2

OO

Rm1(y)

Rm2

OO

y

Rn1

OO

g
// g(y)

Rm1

OO

The final step is chosen so that for

n = n1 + n2 + . . . , m = m1 +m2 + . . .

we have E(Rn(y)) ∈ [C−2ε, C−1ε]. This choice is always possible because on the one hand the energy
increases when applying R (since in real-analytic regularity R is expanding, Lemma 3.7), but on the
other it cannot grow too fast. Indeed, for any z /∈ ∆n−1 and j ≤ n we have E(Rj(z)) = (Rj)′(z) · E(z)
and thus

C−1E(z) ≤ E(Rj(z)) ≤ CE(z).

We also have
E(Rm(g(y))) ∈ [C−3ε, ε]. (3.20)

Indeed, we know that Rmg = hRn and E(Rn(y)) ∈ [C−2ε, C−1ε]; we also have C−1 ≤ ‖h′‖0 ≤ C,
by our choice of C, therefore from the equality

E(Rm(g(y))) = E(hRn(y)) = h′(Rn(y)) · E(R(y))

we can easily deduce (3.20). In particular, both Rn(y) and Rm(g(y)) are in Xε. This proves iii.
We now proceed to the proof of ii: let us estimate

∑
x∈Xε

E(x). We will show that it does not
exceed some universal constant C0 that does not depend on ε.

We consider the intervals J+
x given by Proposition 3.10. Any two distinct intervals J+

x , J+
y either

are disjoint, or one is contained into the other. As in the proof of Lemma 3.15, we observe that in
the latter case, the ratio of the lengths is larger than λ > 1 (due to control of distortion).

We claim that there exists a uniform C2 such that for any ε > 0, any point of the circle is covered
by at most C2 intervals J+

x , with x ∈ Xε.
Indeed, let z ∈ S1 be any point and denote by J+

x1 ⊂ . . . ⊂ J+
xd

all the intervals containing z,
given by points xi ∈ Xε, ordered by inclusion. On the one hand, we must have

|J+
xd
|

|J+
x1 |
≥ λd.

On the other hand, using (3.18), there exists a constant c > 0 such that for any x ∈ X one has

c−1 · E(x) ≤ |J+
x | ≤ c · E(x),
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whence
|J+
xd
|

|J+
x1 |
≤ c · E(xd)
c−1 · E(x1) ≤ c

2C3,

for x1, xd ∈ Xε. Thus we have a uniform bound for the number of overlaps d given by λd ≤ c2C3.
Therefore it is enough to take C2 such that

λC2 > c2C3.

We deduce the inequality ∑
x∈Xε

|J+
x | ≤ C2,

Thus, using (3.18), there exists C0 such that∑
x∈Xε

E(x) ≤ C0,

as desired. This proves ii.

Decomposition of the stabilizer – Fix ε > 0 and the corresponding finite set X ′ ⊂ X from
Lemma 3.25. From now on we increase the set of generators G, adding all the elements in G̃ to it.
The Schreier graph Sch(X,G) is considered with respect to this increased generating system. For an
infinite connected component C of X \X ′, denote by XC the part of X ′ which is adjacent to C.

Observe that any element g ∈ G fixing a point of the orbit X defines a loop in the Schreier graph
Sch(X,G) (and viceversa). By a local conjugation by a sufficiently large power of the magnification
R, we bring any loop contained in an infinite connected component of X \X ′, to the finite set X ′:

Lemma 3.26. Let C be an infinite connected component of X \X ′. Consider a point x ∈ C and
an element g ∈ G that fixes x and that can be written in the form g = gm · · · g1 with respect to the
generating set G, such that gi · · · g1(x) ∈ C for any i ≤ m.

Then there exists N ∈ N and an element h ∈ G such that the following properties are satisfied:

i. there exists a neighbourhood U of x such that g|U = R−NhRN |U ,

ii. RN (x) ∈ XC and Rj(x) ∈ C for any j < N ,

iii. with respect to the generating system G, h can be written in the form h = sk · · · s1, with
si · · · s1(RN (x)) ∈ XC for any i ≤ k.

Proof. Let x ∈ C and g = gm · · · g1 ∈ G be such as in the lemma. We let xk denote gk · · · g1(x).
The magnification procedure yields intervals Jik such that gk|Jik

= R−n′khikRnk with hik ∈ G and
nk, n

′
k ∈ N satisfying Rnk(xk),Rn

′
k(xk+1) ∈ XC and Ri(xk),Rj(xk+1) ∈ C for every i < nk and

j < n′k.
Let us fix U , a neighbourhood of x such that for every k ∈ {1, · · ·m} gk · · · g1(U)⊂ Jk. In

restriction to U , g has the following decomposition

g = R−n1
(
Rn1R−n′mhimRnm · · ·R−n′2hi2Rn2R−n′1hi1

)
Rn1 .

We claim that N = n1 and h = Rn1R−n′mhimRnm · · ·R−n′2hi2Rn2R−n′1hi1 satisfy the conclusions
of the lemma. The first property holds by construction. The second one holds by definition of n1.
Let us prove that the third one holds as well.
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Set yk = Rnk(xk) and zk = hik(yk). By Lemma 3.25 we have yk, zk ∈ X ′. Let us describe the
loop based at y1 defined by h. It links yk to zk via hik and zk to yk+1 via some power of R. We
claim that this last path must stay inside XC .

Indeed, its two endpoints belong to XC ⊂ X ′, meaning that their energies are between C−3ε
and ε. Using Lemma 3.7, we have that in real-analytic regularity, the map R is expanding, so the
energy is monotone along the path. Therefore the path is contained in X ′, and hence in XC .

This concludes the proof of the lemma.

Next, we decompose a loop contained in XC into finitely many simple loops inside XC :
Lemma 3.27. Let h ∈ G be an element fixing a point y ∈ XC, such that h can be written in the
form h = hm · · ·h1 with respect to the generating system G, and such that

hi · · ·h1(y) ∈ XC for every i ≤ m.

Then there exists elements γ1, . . . , γα such that the following properties are satisfied:
i. h = γα · · · γ1,

ii. any γj fixes a point xj in XC,

iii. any γj can be written in the form γj = tk · · · t1 with respect to the generating system G, in such
a way that for any i = 1, . . . , k, the points ti · · · t1(xj) belong to XC and all are distinct.

Proof. As we said, we take the loop based at y representing h, which is contained in XC, and we
decompose it into simple loops contained in XC .

Proof of Proposition 3.22 – By assumption, the Schreier graph of the orbit X has infinitely
many ends, thus for any K there exists ε > 0 such that in the complement of the set X ′ given by
Lemma 3.25 there are at least K infinite connected components. As above, for any such component
C we denote by XC the subset of X ′ that is adjacent to C.

Lemma 3.25 implies that for at most
⌊

3C0
δ

⌋
connected components C, the sum of energies SC

satisfies
SC :=

∑
x∈XC

E(x) ≥ δ

3 .

Take K sufficiently large such that ε < δ
3 and K > 3C0

δ ; in this way we ensure at least one infinite
connected component C of X \X ′ satisfying SC < δ

3 . We show that with this condition, the component
C satisfies the requirements in the statement.

Let x ∈ C and g ∈ StabG(x) be as in the statement. Using Lemma 3.26, we find a power N of
R that locally conjugates g to an element h that fixes a point in XC and defines a loop contained
in XC. By applying Lemma 3.27, we decompose h into a product h = γα · · · γ1, with every γi
defining a simple loop in XC . Therefore there exists a neighbourhood U of x such that we have the
decomposition

g|U = R−Nγα · · · γ1RN |U . (3.21)
The loops defined by the γj ’s are simple: we can write γj = tk · · · t1, such that all the points
ti · · · t1(xj) belong to XC and all are distinct. Hence we have the upper bound

k−1∑
i=0
E(ti · · · t1(xj)) ≤ SC < δ,

Then Lemma 3.24 implies that the γj ’s are trivial. Because of the decomposition (3.21), also g is
trivial, as desired.
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Proof of Theorem D – We proceed as for Theorem 3.1. Consider the class of the loop defined
by the stabilizer h ∈ StabG(x0) in the fundamental group π1(Sch(X,G), x0). The holonomy covering
π : Gx0→ Sch(X,G) is exactly the covering associated with this element.

After Proposition 3.22, there exists a finite set X ′ and an infinite connected component of X \X ′
such that any loop contained in C can be lifted to Gx0 . This implies that the pre-image of C of the
holonomy covering is homeomorphic to C × Z. Denote by φ the homeomorphism φ : C × Z→π−1(C).

For any n > 0, Let Yn be a finite set contained in π−1(X ′) such that Gx0 \Yn contains φ(C× [1, n]).
We deduce that Gx0 \ Yn contains at least n infinite connected components. Letting n go to infinity,
we deduce that Gx0 has infinitely many ends, as desired.
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