Approaches for many-objective optimization: analysis and comparison on MNK-landscapes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Approaches for many-objective optimization: analysis and comparison on MNK-landscapes

Résumé

This work analyses the behavior and compares the performance of MOEA/D, IBEA using the binary additive ε and the hypervolume difference indicators, and AεSεH as representative algorithms of decomposition, indicators, and ε-dominance based approaches for manyobjective optimization. We use small MNK-landscapes to trace the dynamics of the algorithms generating high-resolution approximations of the Pareto optimal set. Also, we use large MNK-landscapes to analyze their scalability to larger search spaces.
Fichier principal
Vignette du fichier
Aguirre-EA2015-manuscript.pdf (318.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01178613 , version 1 (09-09-2021)

Identifiants

  • HAL Id : hal-01178613 , version 1

Citer

Hernan Aguirre, Saúl Zapotecas-Martínez, Arnaud Liefooghe, Sébastien Verel, Kiyoshi Tanaka. Approaches for many-objective optimization: analysis and comparison on MNK-landscapes. 13th International Conference on Artificial Evolution (EA 2015), Oct 2015, Lyon, France. pp.14-28. ⟨hal-01178613⟩
470 Consultations
91 Téléchargements

Partager

More