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2 Université Lille 1 LIFL, UMR CNRS 8022, France
Inria Lille-Nord Europe, France
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Abstract. This work analyses the behavior and compares the perfor-
mance of MOEA/D, IBEA using the binary additive ε and the hyper-
volume difference indicators, and AεSεH as representative algorithms of
decomposition, indicators, and ε-dominance based approaches for many-
objective optimization. We use small MNK-landscapes to trace the dy-
namics of the algorithms generating high-resolution approximations of
the Pareto optimal set. Also, we use large MNK-landscapes to analyze
their scalability to larger search spaces.

1 Introduction

Recently, several algorithms are being proposed for many-objective optimization.
Preferred approaches to implement selection in many-objective optimization are
decomposition, performance indicators, and relaxations of Pareto dominance.

Decomposition based algorithms [1, 2] break down the many-objective prob-
lem into a large number of single-objective problems using scalarizing functions.
The single objective problems are then solved concurrently. The scalarizing func-
tions are usually defined in advance and remain fixed during the search. To cre-
ate a set of scalarizing functions we assume a distribution of the Pareto optimal
front and the algorithm aims to find good solutions that match our assump-
tions on distribution. Indicator based algorithms use a performance indicator
function to assess the quality of a set of solutions. These algorithms optimize a
single-objective function aiming to find the best subset of Pareto non-dominated
solutions according to the performance indicator [3–5]. Popular indicators are
additive ε, hypervolume, and R2. Relaxations of Pareto dominance modify the
dominance relation to discern between initially incomparable solutions. One ef-
fective approach to relax Pareto dominance is ε-dominance [6]. ε-dominance
based algorithms expand the area of dominance of some non-dominated solutions
using a mapping function that depends on a parameter ε. These algorithms use
ε-dominance principles to update the archive [7] or sample the instantaneous
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population [8] in order to keep a subset of solutions spaced with the resolu-
tion induced by the ε mapping function. These three different approaches have
led to many-objective algorithms that perform significantly better than conven-
tional multi-objective algorithms on many-objective problems. However, there
is not much work comparing them in a rigorous way and their dynamics solving
many-objective problems is not yet fully understood.

This work analyses the behavior of representative algorithms that imple-
ment the above three main approaches for selection, namely the decomposi-
tion based MOEA/D, the indicator based IBEA using the binary additive ε-
indicator and the binary hypervolume difference-indicator, and the ε-dominance
based AεSεH. As reference, it also includes results by NSGA-II [9]. First, we use
MNK-landscapes with 20 bits to trace the dynamics of the algorithms finding
new optimal solutions and compare their performance generating high-resolution
approximations of the Pareto optimal set. Then we use MNK-landscapes with
100 bits and analyze their scalability to larger search spaces. This work reveals
important strengths and limitations of these algorithms for many-objective op-
timization, explaining their behavior and performance when convergence and
diversity of the approximation is considered.

2 Algorithms

2.1 MOEA/D (Multiobjective EA Based on Decomposition)

MOEA/D [2] is a decomposition-based EMO algorithm that seeks high-quality
solutions in multiple regions of the objective space by decomposing the original
(multi-objective) problem into a number of scalarizing (single-objective) sub-
problems. MOEA/D defines a neighboring relation among sub-problems, based
on the assumption that a given sub-problem is likely to benefit from the current
solutions maintained in the corresponding neighboring sub-problems. More par-
ticularly, let µ be the user-defined number of sub-problems. A set (λ1, . . . , λi, . . . ,
λµ) of uniformly-distributed weighting coefficient vectors defines the scalarizing
sub-problems, and a population P = (x1, . . . , xi, . . . , xµ) is maintained such that
each individual xi maps to the current solution of the corresponding sub-problem
defined by λi. In addition, a set of neighbors Neig(i) is defined by considering
the T closest weighting coefficient vectors for each sub-problem i (including it-
self), i ∈ {1, . . . , µ}. At each iteration, the population evolves with respect to a
given sub-problem i. Two solutions are selected at random from Neig(i) and an
offspring is produced by means of crossover and mutation operators. Then, for
each sub-problem j ∈ Neig(i), the offspring x is used to replace the current so-
lution xj if there is an improvement in terms of the defined scalarizing function.
The algorithm iterates over sub-problems until a stopping condition is satisfied.

Different scalarizing functions can be used within MOEA/D. In this paper,
we use the weighted Chebyshev metric defined below.

g(x, λ) = max
i∈{1,...,m}

λi ·
∣

∣z⋆i − fi(x)
∣

∣ (1)



3

such that x belongs to the solution space, λ is a weighting coefficient vector and
z⋆ is a reference point.

2.2 IBEA (Indicator-Based Evolutionary Algorithm)

IBEA [3] tries to introduce a total order between solutions by means of an
arbitrary binary quality indicator I. The fitness assignment scheme of IBEA
is based on a pairwise comparison of solutions in a population with respect to
indicator I. Each individual x is assigned a fitness value measuring the “loss in
quality” in the population P if x was removed from it as follows

Fitness(x) =
∑

x′∈P\{x}

(−e−I(x′,x)/κ), (2)

where κ > 0 is a user-defined scaling factor. Survival selection is based on an
elitist strategy that combines the current population Pt with its offspring Qt,
iteratively deletes worst solutions until the required population size is reached,
and assigns the resulting population to P(t+1). Here, each time a solution is
deleted the fitness values of the remaining individuals are updated. Parent selec-
tion for reproduction consists of binary tournaments between randomly chosen
individuals using their fitness to decide the winners.

Several indicators can be used within IBEA. Here we choose to use the bi-
nary additive ǫ-indicator (Iǫ+) and the binary hypervolume difference-indicator
(IHD), as defined by the original authors [3].

Iǫ+(x,x
′) = max

i∈{1,...,n}
{fi(x)− fi(x

′)} (3)

IHD(x,x′) =

{

H(x′)−H(x) if x′ � x or x � x′

H(x+ x′)−H(x) otherwise
(4)

where x � x′ indicates x Pareto dominates x′. Iǫ+(x,x
′) gives the minimum

value by which a solution x ∈ Pt has to, or can be translated in the objective
space in order to weakly dominate another solution x′ ∈ Pt. H(x) give the mul-
tidimensional volume of the objective space that is dominated by x. IHD(x,x′)
gives the hypervolume that is dominated by x′ but not by x, x,x′ ∈ Pt. More
information about IBEA can be found in [3].

2.3 The AεSεH

Adaptive ε-Sampling and ε-Hood (AεSεH) [8] is an elitist evolutionary many-
objective algorithm that applies ε-dominance principles for survival and parent
selection. There is not an explicit fitness assignment method in this algorithm.

Survival selection joins the current population Pt and its offspring Qt and
divide it in non-dominated fronts F = {Fi}, i = 1, 2, · · · , NF using the non-
dominated sorting procedure. In the rare case where the number of non-dominated
solutions is smaller than the population size |F1| < |P |, the sets of solutions Fi
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are copied iteratively to Pt+1 until it is filled; if set Fi, i > 1, overfills Pt+1, the
required number of solutions are chosen randomly from it. On the other hand, in
the common case where |F1| > |P |, it calls ε-sampling with parameter εs. This
procedure iteratively samples randomly a solution from the set F1, inserting the
sample in Pt+1 and eliminating from F1 solutions ε-dominated by the sample.
After sampling, if Pt+1 is overfilled solutions are randomly eliminated from it.
Otherwise, if there is still room in Pt+1, the required number of solutions are
randomly chosen from the initially ε-dominated solutions and added to Pt+1.

For parent selection the algorithm first uses the procedure ε-hood creation to
cluster solutions in objective space. This procedure randomly selects an individ-
ual from the surviving population and applies ε-dominance with parameter εh. A
neighborhood is formed by the selected solution and its εh-dominated solutions.
Neighborhood creation is repeated until all solutions in the surviving population
have been assigned to a neighborhood. Parent selection is implemented by the
procedure ε-hood mating, which sees neighborhoods as elements of a list that
are visited one at the time in a round-robin schedule. The first two parents are
selected randomly from the first neighborhood in the list, the next two parents
are selected randomly from the second neighborhood, and so on. When the end
of the list is reached, parent selection continues with the first neighborhood in
the list. Thus, all individuals have the same probability of being selected within a
specified neighborhood, but due to the round-robin schedule individuals belong-
ing to neighborhoods with fewer members have more reproduction opportunities
that those belonging to neighborhoods with more members.

Both epsilon parameters εs and εh used in survival selection and parent
selection, respectively, are dynamically adapted during the run of the algorithm.
Further details about AεSεH can be found in [8].

3 Test problems, performance measures, and algorithms

parameters

To evaluate the algorithms we use small and large MNK-landscapes [10] ran-
domly generated withM = 3, 4, 5, 6 objectives. The small landscapes are defined
with N = 20 bits and K = 1 epistatic bit (5%). We enumerate these landscapes
and analyze the dynamics of the algorithms respect to the optimum set. The
size of the Pareto optimal set (POS) found by enumeration and the number of
non-dominated fronts are shown in Table 1 under columns |POS| and Fronts,
respectively. The same table also shows the corresponding fraction (%) of the
population sizes |P | to the |POS| for various population sizes investigated. Also,
we define large landscapes with N = 100 bits and K = 5 epistatic bits (5%) and
use them to study the scalability of the algorithms to larger search spaces.

We run the algorithms for a fixed number of T generations, collecting in
separate files the sets of non-dominated solutions F1(t) found at each generation.
The approximation of the POS for a run of the algorithm, denoted A(T ), is
built by computing the non-dominated set from all generational non-dominated
sets F1(t), t = 0, 1, · · · , T , making sure no duplicate solutions are included. In
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Table 1. Size of the Pareto optimal set |POS| and number of Fronts in the landscapes
with M = 3, 4, 5, and 6 objectives, N = 20 bits, and K = 1 epistatic bit. Fractions |P |
/ |POS| of population size to the size of the POS (in %) investigated in this study.

|P | / |POS| (%)
M |POS| Fronts 50 100 200

3 152 258 32.9 65.8 132.6
4 1,554 76 3.2 6.4 12.9
5 6,265 29 0.8 1.6 3.2
6 16,845 22 0.3 0.6 1.2

general, the approximation at generation t is given by

X (t) = {A(t− 1) ∪ F1(t) \ A(t − 1) ∩ F1(t)} (5)

A(t) = {x : x ∈ X (t)∧ 6 ∃y ∈ X (t) y � x} (6)

A(0) = F1(0), (7)

where y � x denotes solution y Pareto dominates solution x.
For small landscapes we report the basic resolution index α of the approxi-

mation at generation t [11], expressed by

α(t) =
|{x : x ∈ A(t) ∧ x ∈ POS}|

|POS|
, (8)

which gives the fraction of the accumulated number of Pareto optimal (PO)
solutions found until generation t to the size of the POS. The highest resolution
of the generated approximation of the POS is achieved when all Pareto optimal
solutions are found. We also report three generational search assessment indices
[11], the fraction τ+t of Pareto optimal solutions in the population at generation t
that are new respect to the previous generation, the fraction δt of Pareto optimal
solutions dropped at generation t, and the fraction γt of non-dominated solutions
in the population that are not Pareto optimal solutions at generation t. Table 2
summarizes these indices.

For landscapes with N = 100 bits, where the Pareto optimal set is unknown,
we compute the non-dominated reference set R from the solutions found by
all algorithms. We report the Inverse Generational Distance (IGD) between
the approximation A(T ) found by the algorithms and the reference set R. In
addition, we also report the coverage C metric between the approximationsA(T )
found by the algorithms.

All algorithms use two point crossover with rate pc = 1.0, and bit flip mu-
tation with rate pm = 1/N . In MOEA/D we use the Tchebycheff scalarizing
function, as mentioned above, set the neighborhood size to 10, as suggested
for knapsack problems in the original implementation of MOEA/D. The set of
weights vectors is generated according to the methodology presented in [12],
which projects the discrepancy given by a set of points contained in a (k − 1)-
dimensional unit cube into a (k − 1)-simplex that defines the set of weights
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Table 2. Generational search-assessment indices It. Measures are taken on non-
dominated population F1(t) with respect to F1(t − 1) and/or the POS, normalized
by population size |P |.

It Formula Comment

τ+
t |{x : x ∈ F1(t) ∧ x 6∈ F1(t− 1) ∧ x ∈ POS}| / |P | Possibly new PO solutions
δt |{x : x ∈ F1(t− 1) ∧ x 6∈ F1(t) ∧ x ∈ POS}| / |P | Dropped PO solutions
γt |{x : x ∈ F1(t) ∧ x 6∈ POS}| / |P | Non-dominated, not PO sol.

vectors. One advantage of using this strategy is that we can define a well-
distributed set of weights vectors (in terms of low discrepancy) without depend-
ing of any constant as conventional methodologies do (see e.g. [2]) and regardless
of the dimension of the weights vectors. In AεSεH we set the reference neigh-

borhood size HRef
size to 20 individuals. The mapping function f (x) 7→ǫ f

′

(x)
used for ε-dominance in ε-sampling truncation and ε-hood creation is additive,
f

′

i = fi+ ε, i = 1, 2, · · · ,m. For IBEA, we observe the behavior of the algorithm
setting the scaling factor to κ = 0.05 suggested in [3] and κ = 0.001. IBEA finds
considerably fewer optimal solutions if κ = 0.05. Here we report results obtained
setting κ = 0.001. The algorithms run for T = 100 generations with population
sizes |P | = {50, 100, 200} on landscapes with N = 20 bits and for T = 1000
generation with population size |P | = 1000 on landscapes with N = 100 bits.
Results analyzed here were obtained from 30 independent runs of the algorithms.

4 Experimental Results and Discussion

4.1 Small landscapes

First, we analyze the basic resolution index α(T ) of the approximation at the
end of the run, i.e. the ratio of accumulated number of PO solutions found to
the size of the POS. Results for all algorithms are shown in Fig.1 for 3, 4, 5,
and 6 objectives using population sizes of {50, 100, 200}. For convenience the
algorithms are labeled as A, Ie, Ihv, M, and N and correspond to AεSεH, IBEA
Iε+, IBEA IHD , MOEA/D, and NSGA-II, respectively.

For M = 3 objectives, note that AεSεH finds more Pareto optimal solutions
than the other algorithms for the three population sizes tried here. MOEA/D
finds more Pareto optimal solutions than NSGA-II for population size 50, but
the contrary is true for population sizes 100 and 200. IBEA Iε+ and IHD find
consistently fewer Pareto optimal solutions than the other algorithms. In M = 3
the ratios of population size to the size of the Pareto optimal set are |P|/|POS| ∼
{33, 66, 133} (%) for |P | = {50, 100, 200}, respectively. That is, the population
size is relatively large compared to the Pareto optimal set. In this case, note that
the difference in the resolution achieved by the algorithms reduces considerably
as the ratio |P|/|POS| increases to very large values.

On the other hand, for 4, 5 and 6 objectives, note that overall MOEA/D finds
more Pareto optimal solutions than the other algorithms, followed by AεSεH.
NSGA-II scales up badly in the number of objectives and becomes similar or
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Fig. 1. Resolution of the approximation at the end of the run α(T ), i.e. ratio of accu-
mulated number of Pareto optimal solutions found to the size of the POS. Population
sizes 50, 100, and 200 for 3, 4, 5, and 6 objectives. Algorithms AεSεH (A), IBEA Iε+
(Iε), IBEA IHD (Ihv), NSGA-II (N) and MOEA/D (M).

worse than IBEA Iε+ and IBEA IHD. In M = 4 the ratios are |P|/|POS| ∼
{3.2, 6.4, 12.9} (%). In this case the advantage of MOEA/D over AεSεH seen
for ratios 6.4% and 3.2% disappears for the ratio 12.9% (|P = 200|). In M = 5
and M = 6 the ratios |P|/|POS| used in our experiments are around {0.8, 1.6,
3.2} (%) and {0.3, 0.6, 1.2} (%). These ratios are quite small and the superiority
of MOEA/D to achieve a better resolution is undisputed.

In 3, 4, and 5 objectives landscapes with N = 20 bits the algorithms can
hit easily the Pareto optimal set after few generations. In M = 6 there are few
optimal solutions even in the random initial population. Therefore, the above
results reflect mostly the ability of the algorithms to continue discovering Pareto
optimal solutions once they hit the Pareto optimal set.

In the following we analyze the dynamics of the algorithms for M = 3 ob-
jectives with population size |P | = 50, where |P | is 32.9% of the |POS|, and for
M = 6 with |P | = 200, where |P | is 1.2% of the |POS|. Our aim is to understand
the behavior of the algorithms under small and large ratios |P |/|POS| and ex-
plain how the algorithms achieve the resolutions observed in Fig.1. This analysis
will also help understand how the scalability to larger search spaces could be
affected by the dynamics of the algorithms.
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(d) MOEA/D, |P |=200, M=6
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(e) IBEA IHD, |P |=50, M=3
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(f) IBEA IHD, |P |=200, M=6

Fig. 2. Pareto optimal solutions in the population that are new respect to the previous
generation. Population sizes 50 and 200 for 3 and 6 objectives, respectively. Algorithms
AεSεH, MOEA/D, and IBEA IHD.

Fig.2 shows the fraction τ+t of Pareto optimal solutions that are new in
the population respect to the previous generation. That is, τ+t includes Pareto
optimal solutions that are being rediscovered and also those seen for the first
time. Note that τ+t in AεSεH and MOEA/D peak during the initial generations
and remain close to its peak value throughout the generations. However, τ+t in
AεSεH is smaller than in MOEA/D (around half), both in M = 3 with |P | = 50
(32.9% of the |POS|) and M = 6 with |P | = 200 (1.2% of the |POS|). In
the case of IBEA, after τ+t has reached its peak rapidly drops to a very small
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(b) AεSεH, |P |=200, M=6
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(c) MOEA/D, |P |=50, M=3
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(d) MOEA/D, |P |=200, M=6

Fig. 3. Pareto optimal solutions dropped from the population. Population sizes 50 and
200 for 3 and 6 objectives, respectively. Algorithms AεSεH and MOEA/D.

value, indicating that IBEA rediscovers and/or finds very few new Pareto optimal
solutions after 30 generations.

Fig.3 shows the ratio δt of Pareto optimal solutions in the population that
are dropped over the generations. These dropped solutions are replaced by other
non-dominated solutions, optimal or not. Note that the trends of the curves are
similar to those of τ+t shown in Fig.2. MOEA/D drops almost three times as
many Pareto optimal solutions as AεSεH in both cases, M = 3 with |P | = 50
(32.9% of |POS|) and M = 6 with |P | = 200 (1.2% of |POS|). IBEA drops
very few solutions, particularly after the algorithm has evolved few generations
(results are not included here due to space limitations).

Fig.4 shows the ratio γt of solutions that are non-dominated in the population
but are not Pareto optimal. Note that γt in AεSεH is larger than in MOEA/D
during the initial 20 or 10 generations, where the algorithms are approaching
the optimal front and few solutions in the population are expected to be Pareto
optimal. However, after this initial period, when a significant number of Pareto
optimal solutions should have accumulated in the population γt is three times
higher in MOEA/D than in AεSεH.

To summarize, whether the fraction |P |/|POS| is small or large, MOEA/D
discovers and rediscovers more Pareto optimal solutions than AεSεH. However,
MOEA/D also drops more optimal solutions than AεSεH and includes in its
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(b) AεSεH, |P |=200, M=6
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(c) MOEA/D, |P |=50, M=3

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

Generation

N
D

om
N

P
os

 / 
|P

|

(d) MOEA/D, |P |=200, M=6

Fig. 4. Non-dominated solutions in the population that are not Pareto optimal. Pop-
ulation sizes 50 and 200 for 3 and 6 objectives. Algorithms AεSεH and MOEA/D.

population a larger number of non-dominated non-Pareto optimal solutions than
AεSεH. The discovery of new Pareto optimal solutions together with the ability
to drop and replace them with other Pareto optimal solutions can be seen as
an exploitative feature of the algorithm to continue reaching optimal solutions
from optimal solutions. However, Pareto optimal solutions are also replaced with
non-optimal solutions. In this case, the algorithm steps down to inferior solutions
and tries to climb back again. This feature is more explorative and could help
the algorithm to scape local optima, or to reach optimal solutions that cannot
be reached easily from other optimal solutions. These two features are observed
in both MOEA/D and AεSεH. However, the indices explored here suggest that
exploration in MOEA/D is more intense than in AεSεH. The better approxi-
mation achieved by AεSεH on 3 objectives, where there are more fronts to be
climbed towards the Pareto optimal set, and the better approximations achieved
by MOEA/D on larger number of objectives, where there are less fronts to be
climbed, are an indication that this explorative feature could impact greatly the
performance of the algorithm. In larger search spaces, it is not so simple to hit
the Pareto optimal set. There, too much exploration could be detrimental to the
performance of the algorithm.

An important question is how the algorithms come to drop Pareto optimal
solutions from the population, particularly in favor of inferior solutions. In dom-
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inance based algorithms this could happen during truncation when the number
of non-dominated solutions obtained from the combined population of parents
and offspring is larger than the size of the population. The scope of the Pareto
relation between solutions is the population, and not all points in the landscape.
Thus, solutions that appear non-dominated in the population may actually be
dominated by other solutions in the landscape. For example, when the algorithm
hits parts of the optimal front, even if some solutions in the combined population
of parents and offspring are optimal others may be suboptimal and still appear
non-dominated. In this case, Pareto optimal solutions could be dropped in favor
of suboptimal solutions when the subset of surviving solutions is selected, be-
cause a dominance based algorithm cannot distinguish between non-dominated
solutions. It is important to emphasize that although inferior solutions in the
landscape may appear non-dominated by an optimal solution (superior solutions
in general) in the population, dominance never reduces the rank of an optimal
solution. In general, dominance never reduces the rank of solutions that are
superior in the landscape (in the Pareto sense).

In the case of decomposition algorithms, by definition there is a different func-
tion for each sub-problem that provides a more strict order between solutions.
In a combinatorial problem, the optimal solution for a sub-problem is hopefully
a Pareto optimal solution. Other solutions are inferior, even if they are Pareto
optimal in the multi-objective landscape. In general, from the Pareto dominance
perspective, solutions that are superior in the multi-objective landscape could be
ranked lower than inferior solutions. This is an important difference with domi-
nance based approaches. When the algorithm hits the Pareto optimal set, each
optimal solution in the population will be associated to one or few subproblems.
These Pareto optimal solutions could be dropped in favor of a solution with
higher rank in the subproblem, whether this better ranked solution is superior
or not in the Pareto sense.

In the case of IBEA, the algorithm tries to introduce a total order between
solutions giving higher rank to solutions located towards the ideal point. Thus,
IBEA tends to converge towards the subset of solutions with highest rank located
in the central region of objective space, which cardinality is the size of the
population. Once there, the continuous sampling from that subset could lead to
discover other Pareto optimal solutions. However, they will have a rank inferior
to those in the population and thus are not eligible to replace optimal solutions.
After a while, the algorithm cannot find new solutions from the same set and
stagnates. Due to the total order, this algorithm includes features that can help
convergence in larger subspaces, thought diversity could still be an issue.

4.2 Large landscapes

In this section we present results of the algorithms on landscapes with N = 100
bits in order to analyze their scalability to larger search spaces. Fig.5 and Fig.6
show the inverse generational distance IGD of the approximation obtained by
the algorithms and the coverage C metric between the approximations of AεSεH
and the other algorithms, respectively. For these problems we don’t know the
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Fig. 5. IGD. Algorithms AεSεH (A), IBEA Iε+ (Iε+), IBEA IHD (IHD), NSGA-II (N)
and MOEA/D (M).

Pareto optimal set, so we compute IGD taking as reference the non-dominated
set obtained from the non-dominated solutions found by all algorithms.

First, looking at IGD in Fig.5, note that AεSεH achieves better (lower) IGD
than the other algorithms in 3, 4, 5 and 6 objectives. In 3 objectives, IBEA Iε+ ,
IBEA IHD , MOEA/D and NSGA-II achieve similar IGD. However, for M > 3
objectives IBEA Iε+ is the second best algorithm in terms of IGD. For M = 4
and M = 5 there is not much difference between IBEA IHD and MOEA/D.
However, for M = 6 MOEA/D is significantly better than IBEA IHD. NSGA-II
is overall the worst algorithm

Next, looking at coverage C in Fig.6, note that for M = 3 C(A,·) > C(·,A)
for all algorithms Ie+, Ihv, M, and N. This indicates that solutions of AεSεH
dominate more solutions of the other algorithms and fewer solutions of AεSεH
are dominated by solutions of the other algorithms. Increasing the number of ob-
jectives above 3, the dominance gap between AεSεH and MOEA/D and between
AεSεH and NSGA-II increase. However, fewer solutions by IBEA algorithms are
dominated by AεSεH. For example in M = 6 objectives, in average around 3%
of IBEA IHD’s solutions are dominated by AεSεH and around 20% of AεSεH’s
solutions are dominated by IBEA IHD . Between the two IBEA algorithms, C is
slightly better for IHD than for Iε+. This however depends strongly on the value
set for κ in IBEA.
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Fig. 6. C metric. Algorithms AεSεH (A), IBEA Iε+ (Iε+), IBEA IHD (IHD), NSGA-II
(N) and MOEA/D (M).

These results complement our analysis of the previous section and confirms
our expectation that too much exploration by MOEA/D could be detrimental to
its performance in larger landscapes. It also shows that IBEA can find a subset
of well converged solutions. However, it does it at the expense of not finding
a well spread set of solutions. AεSεH seems to have a good balance between
convergence and diversity, which favors its scalability to larger landscapes. It
will be interesting to find ways to control the exploration/exploitation features
of the algorithms studied here to improve their performance, whether we scale
up the objective space or the search space.

5 Conclusions

This work analyzed and compared the performance of MOEA/D, IBEA using
the binary additive ε and the hypervolume difference indicators, and AεSεH
for many-objective optimization. We traced the dynamics of the algorithms in
small MNK-landscapes, performed and off-line analysis of the Pareto optimal so-
lutions discovered and dropped at each generation, and compared the algorithms
for their ability to generate high-resolution approximations of the Pareto optimal
set. Our analysis in small landscapes showed that exploration in MOEA/D is
more intense than in AεSεH. This favors MOEA/D in small landscapes as we in-



14

crease the number of objectives, where is relatively easy to hit the Pareto optimal
set and exploration is more important to increase the resolution of the approx-
imation. However, in large landscapes too much exploration hinders MOEA/D
and AεSεH generates approximations with better convergence and diversity,
regardless of the number of objectives. IBEA converges to the central region
of objective space, achieving low resolutions in small landscapes. In large land-
scapes this results in a subset of solutions with very good convergence properties,
but poorly spread. In the future we would like to find ways to control the ex-
ploration/exploitation features of the algorithms to improve their performance
when we scale up the objective and search spaces.
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