Adaptive kernel estimation of the baseline function in the Cox model, with high-dimensional covariates - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Adaptive kernel estimation of the baseline function in the Cox model, with high-dimensional covariates

Résumé

The aim of this article is to propose a novel kernel estimator of the baseline function in a general high-dimensional Cox model, for which we derive non-asymptotic rates of convergence. To construct our estimator, we first estimate the regression parameter in the Cox model via a Lasso procedure. We then plug this estimator into the classical kernel estimator of the baseline function, obtained by smoothing the so-called Breslow estimator of the cumulative baseline function. We propose and study an adaptive procedure for selecting the bandwidth, in the spirit of Gold-enshluger and Lepski (2011). We state non-asymptotic oracle inequalities for the final estimator, which reveal the reduction of the rates of convergence when the dimension of the covariates grows.
Fichier principal
Vignette du fichier
KernelEstimation_Guilloux_Lemler_Taupin.pdf (701.51 Ko) Télécharger le fichier
Supp_Mat_Guilloux_Lemler_Taupin.pdf (351.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01171775 , version 1 (06-07-2015)
hal-01171775 , version 2 (16-03-2016)

Identifiants

Citer

Agathe Guilloux, Sarah Lemler, Marie-Luce Taupin. Adaptive kernel estimation of the baseline function in the Cox model, with high-dimensional covariates. 2015. ⟨hal-01171775v1⟩
427 Consultations
250 Téléchargements

Altmetric

Partager

More