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1 Technical lemmas

1.1 Proof of Lemma 6.2
From Definition (20), we have ay,(t) = K}, x ap(t) for all ¢ € [0, 7] so that

E[l|an — aoll3] = Elllan — anll2] + [lan — aoll3.
The first term of the right part of this equality can be rewritten as

Efllan - anly] = [ Varfan(0]a.

It remains to bound Var[ay(t)]:
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We apply the Doob-Meyer decomposition Ny = M7 + Aq:
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Then, we have

TEt—w
( o S(u,pBo) dMl)

and we finally get that
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Thus, the integrated variance term of the pseudo-estimator is bounded by
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which gives a bound of order 1/nh.
Gathering the bias term ||a; — ag||3 and the bound on variance term gives Inequality
(22) in Lemma 6.2.
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1.2 Proof of Lemma 6.3
The proof of Lemma 6.3 relies on an additional lemmas. First, write
B 1 & (u, Bo) — Sn(u B) t—u
B 0 )
ay (t) — ap(t) —Z/ = K( )]l V=0t dNV; ().
" nhiS S, Bo)Sulu, B) T\ b)Y
We study the difference process df — &y, on Y, defined by (32) and on its complement.

From Lemma 6.6, the process &E — @y, is controled on }. The following lemma allows to

bound the difference process on 2.



Lemma 1.1. Under Assumptions 3.4.(ii)-(iii) , 3.5.(i)-(iii), 3.1 and 3.2, for any k € N,

we have | i
og(n

) < cds)M

E[]1a7 — anl 31(% i

I

where c4 is a constant depending on B, |Bo|1, R, ||]|so,r» €5, || K ||L2(m), T and s the sparsity
index of Bo.

Gathering Lemmas 6.6 and 1.1, we finally get that, for a fixed k

A - log(n*p)
E[l|a) — a3 < cls)— =

with ¢(s) a constant depending on B, |Bol1, R, ||a0||so,rs €5, || K ||L2(r), T and s the sparsity
index of Bg. and Lemma 6.3 is then proved. Let now prove the Lemmas 6.6 and 1.1.

1.3 Proof of Lemma 6.6 :
We have to bound IE[HO?S — ap|[21(€%)], which is equal to

Efllay — alBL(2)] = [ El@f — a0

PN

First, let us focus on E[(47 — a;)2(t)1(Q5)] defined by
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From Assumptions 3.1, 8 belongs to a ball B(0,R) and |Bo|; < 00, so we have the
following bound

0B Zi(B=Bo)TZi < 2B|Bo o BR (1)
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For sake of simplicity, let us denote C'(B, R, |Bo[1) the bound in (1). From 15,0 in the

definition of df , there exists ip € {1,...,n} such that Y;, # 0, so that from Assumption
3.4.(1)

3 1
(u B) > o~ BlBol1 ,—BlB—Bol > g€—28|ﬂ0|1e_33. (2)

Combining (1) and (2), for C(B, R, |Bel1) = e3F1PohieBE e obtain the following bound
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From Assumption 3.5.(i) and the Cauchy-Schwarz Inequality, we get

[ ([t —wamw) 160p)] < g o)
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From the Doob-Meyer decomposition and the Biirkholder Inequality 2.4, we deduce that
]E[Nl (T)] < 0Q.

Now we focus on [ E[(&
0
obtained above, we have
K15
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Let introduce the following lemma that gives a bound for P(€25).

S

— ap)?(H)1(Q2)]dt.  From the two bounds (3) and (4)

B[Ny (7))

Lemma 1.2. Under Assumptions 5.1 and 5.2, for all k € N, there exists ng € N, such
that for n > ng we have

P[QS] < con™*, (5)
where ¢y is a constant depending on B, |Bol|1 and s.

From Lemma 1.2 and the fact that A~! < n from Assumption 3.5.(ii), we get that
/0 E[(a) — an)?(H)1(Q)]dE<C(B, |Bol1, R, ||ao]loo.rs €5, 7 || K |0 )0t 2,

where C(B, |Bol1, R, ||®0]|co,r, s, T, || K||oo) is & constant depending on elements in brack-
ets. Finally, we obtain

E[H&g - @h”;ﬂ(Qz)] S O(Ba |/30|17 R7 ||a0||oo,77 Cs, T, ||K||00)n4_k/27
which ends the proof of Lemma 6.6. u

1.4 Proof of Lemma 1.1 :

On €, we have

El(a — a1 (0y)] < 1B O loglpr) [(1 3 | |Khu N LA, )) ]
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Then, from the Doob-Meyer decomposition, we deduce that

) 2
1 & | Kt — )| 2g | ([T Eelimw)
’ (2/ de) 0 ( o St M ))
2
2 TKh(t_u) Bgzl
+E ( S Bo) ¢ Yl(“)du)]
2
< W(E[eﬂgzﬂ + IIaolloo,TE[e”"TZlDHK!W
2 S



We finally obtain

. log(pn*)
E[l|&) — anll3,1(2%)] < Cles, llaollse,r 1Bolt B, R, || K |2(ry, S)T- (6)
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1.5 Proof of Lemma 1.2

In order to calculate P(2), let us begin by study the set Q2 defined by (30). Let us
introduce the two following sets

n

%:={w:WMﬂaﬂJ&aw%—suwﬂ@kgBﬁaﬁww0@>lwﬂm“},

Q= {w :Yu € [0,7], S, (1, Bo) — S(u, Bo)| < BePRe2Blholi () log(sn’“) } .

We have Qg D Q21 N Qy. We begin to calculate P(25). By definition, we have

A 1 n a
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Under Assumptions 3.1 and 3.2, from Proposition 3.3, there exists a constant ¢ > 0 such
that, with probability larger than 1 — cn ="

Y

k
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So, with probability larger than 1 — cn™*

we have

, using that |e® — e¥| < |z — yle®Y¥ for all z, v,

A
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We deduce that
P(Q) < en™. (7)
To calculate P(£25), we remark that

n

n(Su(u, Bo) — S(u, Bo)) = 3 <eﬂ5 iy (u) — B[ Zi}fi(u)]).

=1



As 0 < P21y (u) < ePlPolt we apply a Hoeffding inequality:
P(|S S >Y) <o 2y
<’ n(u, Bo) — S(u, Bo)| = n) > £€Xp T he2BlBol |
and with y = BePRe?BlfoliC(s), /nlog(pnk)/2, we finally get

n

IP’<|5n(u,ﬁo) — S(u, Bo)| > C(s) BePRe2BlBolx log(fmk))

2B%e?BRABIBol 02 () log(pnk)
< 2exp (_ e2BlBoly
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We conclude that there exists a constant ¢; > 0 such that
P(Q5) < e ™. (8)
Gathering (7) and (8), we obtain
P(Qfx) < P(QF) +P(Q%) < én”", (9)

where ¢ > 0 is a constant. It remains to calculate P(Q§ ), with Qg defined by (31), to
obtain P(€2f). We decompose

Sn(ua B) - S(ua /80) = Sn(u’ B) - Sn(“: BO) + Sn(ua :60) - S(“? BO)
OIl Ql N QQ,

S (u, B) — Sp(u, By) > —2BePle?Plfol 1 (5) log(imk) € (—00,0)

So for n large enough, we have that S, (u, B) — Sp(u, Bo) > —cs/2. For n large enough,
QN C an, and

P(25,) < P(%) + B(25) < on (10
Gathering (9) and (10), we finally obtain for n large enough that P(2¢) < con™", where
2 is a constant depending on B, |Bo|; and s. ]

2 Classical results

In this appendix, some classical technical lemmas and a theorem needed for the proofs
of the two main theorems of the chapter, are listed. We do not give the proofs of these
well-known results but we give the references where to find their proofs.
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2.1 A Cauchy-Schwarz Inequality

The following lemma gives a useful inequality concerning integrals with respect to the
counting process N.

Lemma 2.1 (Cauchy-Schwarz). For all function g bounded on [0, ],

N [N =

1

T 2
)N, 0<m<n <

1

We refer to Bouaziz et al. (2013) for the proof of this lemma.

2.2 Young Inequality

The following lemma provides an inequality that bounds a norm of the convolution prod-
uct of two functions by a product of norms of each function.

Lemma 2.2 (Young Inequality). Let p,q € [1,+00) such that 1/p+1/q > 1. If s € L’(R)
and t € LI(R), then s and t are convolable. Moreover, if 1/r = 1/p+ 1/q — 1, then
f+xgeL"(R) and

[Is 2]l < [Is]lplItllq

This convolution inequality is proved in Hirsch and Lacombe (1999) (Theorem 3.4
p.149).

2.3 Talagrand Inequality

The following Talagrand Inequality is a concentration inequality that allows to control
the supremum of an empirical process.

Theorem 2.3 (Talagrand Inequality). Let &, ...,&, be independent random values, and
let

1 n
vng(f) = > Af(&) = E[f(&)]}-
i=1
Then, for a countable class of functions F uniformly bounded and ¢ > 0, we have

4 <W _geeni?  98M? _2dw<s>6nfz>
< —e W e V2 M|

E =
—d\n dn?p?(e)

{supygjg(f) —2(1+ 252)H2}
n

ferF

with p(e) =vV1+e2—1,d=1/6 and

supl, ()] < H. - sup > Varlf(€)) < W

sup|[flloo <M, E
fer feFn .=

This theorem is a useful corollary from the classical Talagrand established by Tala-
grand (1996). The proof of Theorem 2.3 can be found in Comte et al. (2008) (Lemma
6.1). The proof of the theorem follows from a concentration Inequality in Klein and Rio
(2005) and arguments that can be found in Birgé and Massart (1998).
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2.4 A classical inequality: the Biirkholder Inequality

The last technical result is a Bilirkholder Inequality that gives a norm relation between a
martingale and its optional process. We refer to Liptser and Shiryayev (1989) p.75, for
the proof of this result.

Theorem 2.4 (Biwrkholder Inequality). If M = (M;, Fi)i>o0 is a martingale, then there
are universal constants y, and ky (independent of M ) such that for every t > 0

Wl IMIll2 < IMila < sl [y [M]] |2,

where [M]; is the quadratic variation of M.

This theorem is used to prove Lemma 6.5 and in the oracle inequalities of Theorem 4.1,
the constants depend on ky,.

References

L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential bounds
and rates of convergence. Bernoulli, 4(3):329-375, 1998.

O. Bouaziz, F. Comte, and A. Guilloux. Nonparametric estimation of the intensity func-
tion of a recurrent event process. Statistica Sinica, 23(2):635-665, 2013.

F. Comte, J. Dedecker, and M.L. Taupin. Adaptive density deconvolution with dependent
inputs. Mathematical Methods of Statistics, 17(2):87-112, 2008.

F. Hirsch and G. Lacombe. FElements of functional analysis, volume 192. Springer, 1999.

T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes.
The Annals of Probability, 33(3):1060-1077, 2005.

R. Sh. Liptser and A. N. Shiryayev. Theory of martingales, volume 49 of Mathematics
and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht,
1989. ISBN 0-7923-0395-4. URL http://dx.doi.org/10.1007/978-94-009-2438-3.
Translated from the Russian by K. Dzjaparidze [Kacha Dzhaparidze].

M. Talagrand. New concentration inequalities in product spaces. Inventiones mathemat-
icae, 126(3):505-563, 1996.


http://dx.doi.org/10.1007/978-94-009-2438-3

	Technical lemmas
	Classical results

