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1 Technical lemmas

1.1 Proof of Lemma 6.2
From Definition (20), we have αh(t) = Kh ∗ α0(t) for all t ∈ [0, τ ] so that

E[||ᾱh − α0||22] = E[||ᾱh − αh||22] + ||αh − α0||22.

The first term of the right part of this equality can be rewritten as

E[||ᾱh − αh||22] =
∫ τ

0
Var[ᾱh(t)]dt.

It remains to bound Var[ᾱh(t)]:
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Var[ᾱh(t)] = 1
n

Var
 ∫ τ

0
Kh(t− u) 1

S(u,β0)dN1(u)


≤ 1
n
E

∫ τ

0
Kh(t− u) 1

S(u,β0)dN1(u)
2.

We apply the Doob-Meyer decomposition N1 = M1 + Λ1:

Var[ᾱh(t)] ≤
2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) dM1(u)

2
+ 2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) α0(u)eβT

0 Z1Y1(u)du
2

Then, we have

E

∫ τ

0

Kh(t− u)
S(u,β0) dM1

2 ≤ E

 ∫ τ

0

K2
h(t− u)

S2(u,β0) α0(u)eβT
0 Z1Y1(u)du

,
and we finally get that

E

∫ τ

0

Kh(t− u)
S(u,β0) dM1

2 ≤ E[eβT
0 Z1 ]||α0||∞,ττ

c2
S

||K||2L2(R)

h
.

Thus, the integrated variance term of the pseudo-estimator is bounded by∫ τ

0
Var[ᾱh(t)]dt ≤

2||α0||∞,ττ
c2
S

(E[eβT
0 Z1 ] + ||α0||∞,τE[e2βT

0 Z1 ]τ)
||K||2L2(R)

nh
,

which gives a bound of order 1/nh.
Gathering the bias term ||αh − α0||22 and the bound on variance term gives Inequality

(22) in Lemma 6.2.

1.2 Proof of Lemma 6.3
The proof of Lemma 6.3 relies on an additional lemmas. First, write

α̂β̂h(t)− ᾱh(t) = 1
nh

n∑
i=1

∫ τ

0

S(u,β0)− Sn(u, β̂)
S(u,β0)Sn(u, β̂)

K
(
t− u
h

)
1{Ȳ (u)>0}dNi(u).

We study the difference process α̂β̂h − ᾱh on Ωk, defined by (32) and on its complement.
From Lemma 6.6, the process α̂β̂h − ᾱh is controled on Ωc

k. The following lemma allows to
bound the difference process on Ωk.
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Lemma 1.1. Under Assumptions 3.4.(ii)-(iii) , 3.5.(i)-(iii), 3.1 and 3.2, for any k ∈ N,
we have

E[||α̂β̂h − ᾱh||221(Ωk)] ≤ c4(s) log(nkp)
n

,

where c4 is a constant depending on B, |β0|1, R, ||α0||∞,τ , cS, ||K||L2(R), τ and s the sparsity
index of β0.

Gathering Lemmas 6.6 and 1.1, we finally get that, for a fixed k

E[||α̂β̂h − ᾱh||22] ≤ c(s) log(nkp)
n

,

with c(s) a constant depending on B, |β0|1, R, ||α0||∞,τ , cS, ||K||L2(R), τ and s the sparsity
index of β0. and Lemma 6.3 is then proved. Let now prove the Lemmas 6.6 and 1.1.

1.3 Proof of Lemma 6.6 :
We have to bound E[||α̂β̂h − ᾱh||221(Ωc

k)], which is equal to

E[||α̂β̂h − ᾱh||221(Ωc
k)] =

∫ τ

0
E[(α̂β̂h − ᾱh)2(t)1(Ωc

k)]dt.

First, let us focus on E[(α̂β̂h − ᾱh)2(t)1(Ωc
k)] defined by

E

( 1
n

n∑
i=1

∫ τ

0
Kh(t− u)1{Ȳ (u)>0}

S(u,β0)− Sn(u, β̂)
S(u,β0)Sn(u, β̂)

dNi(t)
)2

1(Ωc
k)
 .

From Assumptions 3.1, β̂ belongs to a ball B(0, R) and |β0|1 < ∞, so we have the
following bound

Sn(u, β̂)− S(u,β0) ≤ 1
n

n∑
i=1

eβT
0 Zie(β̂−β0)TZi ≤ e2B|β0|1eBR. (1)

For sake of simplicity, let us denote C(B,R, |β0|1) the bound in (1). From 1{Ȳ (u)>0} in the
definition of α̂β̂h , there exists i0 ∈ {1, ..., n} such that Yi0 6= 0, so that from Assumption
3.4.(i)

Sn(u, β̂) ≥ 1
n

e−B|β0|1e−B|β̂−β0|1 ≥ 1
n
e−2B|β0|1e−BR. (2)

Combining (1) and (2), for C̃(B,R, |β0|1) = e8B|β0|1e4BR, we obtain the following bound

E[(α̂β̂h − ᾱh)2(t)1(Ωc
k)] ≤ C̃(B,R, |β0|1)n

2

c2
S

E
[( ∫ τ

0
Kh(t− u)dN1(u)

)2
1(Ωc

k)
]
. (3)
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From Assumption 3.5.(i) and the Cauchy-Schwarz Inequality, we get

E
[( ∫ τ

0
Kh(t− u)dN1(u)

)2
1(Ωc

k)
]
≤ ||K||

2
∞

h2 E[N1(τ)21(Ωc
k)]

≤ ||K||
2
∞

h2 E[N1(τ)4]1/2P(Ωc
k)1/2. (4)

From the Doob-Meyer decomposition and the Bürkholder Inequality 2.4, we deduce that
E[N1(τ)] <∞.

Now we focus on
∫ τ

0
E[(α̂β̂h − ᾱh)2(t)1(Ωc

k)]dt. From the two bounds (3) and (4)
obtained above, we have∫ τ

0
E[(α̂β̂h − ᾱh)2(t)1(Ωc

k)]dt ≤ C̃(B,R, |β0|1)n
2

c2
S

( ||K||2∞
h2 E1/2[N1(τ)4]

√
P(Ωc

k)
)
.

Let introduce the following lemma that gives a bound for P(Ωc
k).

Lemma 1.2. Under Assumptions 3.1 and 3.2, for all k ∈ N, there exists n0 ∈ N, such
that for n > n0 we have

P[Ωc
k] ≤ c2n

−k, (5)
where c2 is a constant depending on B, |β0|1 and s.

From Lemma 1.2 and the fact that h−1 ≤ n from Assumption 3.5.(ii), we get that∫ τ

0
E[(α̂β̂h − ᾱh)2(t)1(Ωc

k)]dt≤C(B, |β0|1, R, ||α0||∞,τ , cS, τ, ||K||∞)n4−k/2,

where C(B, |β0|1, R, ||α0||∞,τ , cS, τ, ||K||∞) is a constant depending on elements in brack-
ets. Finally, we obtain

E[||α̂β̂h − ᾱh||221(Ωc
k)] ≤ C(B, |β0|1, R, ||α0||∞,τ , cS, τ, ||K||∞)n4−k/2,

which ends the proof of Lemma 6.6.

1.4 Proof of Lemma 1.1 :
On Ωk, we have

E[(α̂β̂h − ᾱh)2(t)1(Ωk)] ≤
16B2e4B|β0|1e2BR

c2
S

C2(s) log(pnk)
n

E

 1
n

n∑
i=1

∫ τ

0

|Kh(t− u)|
S(u,β0) dNi(u)

2.
Then, from the Doob-Meyer decomposition, we deduce that

E

 1
n

n∑
i=1

∫ τ

0

|Kh(t− u)|
S(u,β0) dNi(u)

2 ≤ 2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) dM1(u)

2
+ 2
n
E

∫ τ

0

Kh(t− u)
S(u,β0) α0(u)eβT

0 Z1Y1(u)du
2

≤ 2||α0||∞,τ
c2
S

(E[eβT0 Z1 ] + ||α0||∞,τE[e2βT
0 Z1 ])

||K||2L2(R)

c2
S

.
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We finally obtain

E[||α̂β̂h − ᾱh||22,h1(Ωk)] ≤ C(cS, ||α0||∞,τ , |β0|1, B,R, ||K||L2(R), s)
log(pnk)

n
. (6)

1.5 Proof of Lemma 1.2
In order to calculate P(Ωc

k), let us begin by study the set ΩH,k defined by (30). Let us
introduce the two following sets

Ω1 : =

ω : ∀u ∈ [0, τ ], |Sn(u, β̂)− Sn(u,β0)| ≤ BeBRe2B|β0|1C(s)
√

log(pnk)
n

 ,
Ω2 : =

ω : ∀u ∈ [0, τ ], |Sn(u,β0)− S(u,β0)| ≤ BeBRe2B|β0|1C(s)
√

log(pnk)
n

 .
We have ΩH,k ⊃ Ω1 ∩ Ω2. We begin to calculate P(Ωc

1). By definition, we have

|Sn(u, β̂)− Sn(u,β0)| =
∣∣∣∣ 1n

n∑
i=1

(eβ̂TZi − eβT
0 Zi)Yi(u)

∣∣∣∣
≤ eB|β0|1|eB|β̂−β0|1 − 1|

Under Assumptions 3.1 and 3.2, from Proposition 3.3, there exists a constant c > 0 such
that, with probability larger than 1− cn−k,

|β̂ − β0|1 ≤ C(s)
√

log(pnk)
n

.

So, with probability larger than 1 − cn−k, using that |ex − ey| ≤ |x − y|ex∨y for all x, y,
we have

|Sn(u, β̂)− Sn(u,β0)| ≤ eB|β0|1B|β̂ − β0|1eB|β̂−β0|1

≤ BeBRe2B|β0|1C(s)
√

log(pnk)
n

.

We deduce that
P(Ωc

1) ≤ cn−k. (7)

To calculate P(Ωc
2), we remark that

n(Sn(u,β0)− S(u,β0)) =
n∑
i=1

(
eβT

0 ZiYi(u)− E[eβT
0 ZiYi(u)]

)
.
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As 0 ≤ eβT
0 Z1Y1(u) ≤ eB|β0|1 , we apply a Hoeffding inequality:

P
(
|Sn(u,β0)− S(u,β0)| ≥ y

n

)
≤ 2 exp

(
− 2y2

ne2B|β0|1

)
,

and with y = BeBRe2B|β0|1C(s)
√
n log(pnk)/2, we finally get

P

|Sn(u,β0)− S(u,β0)| ≥ C(s)BeBRe2B|β0|1

√
log(pnk)

n


≤ 2 exp

− 2B2e2BRe4B|β0|1C2(s) log(pnk)
e2B|β0|1


≤ 2
pnk

.

We conclude that there exists a constant c7 > 0 such that

P(Ωc
2) ≤ c7n

−k. (8)

Gathering (7) and (8), we obtain

P(Ωc
H,k) ≤ P(Ωc

1) + P(Ωc
2) ≤ c̃n−k, (9)

where c̃ > 0 is a constant. It remains to calculate P(Ωc
Sn), with Ωc

Sn defined by (31), to
obtain P(Ωc

k). We decompose

Sn(u, β̂)− S(u,β0) = Sn(u, β̂)− Sn(u,β0) + Sn(u,β0)− S(u,β0).

On Ω1 ∩ Ω2,

Sn(u, β̂)− Sn(u,β0) ≥ −2BeBRe2B|β0|1C(s)
√

log(pnk)
n

∈ (−∞, 0)

So for n large enough, we have that Sn(u, β̂) − Sn(u,β0) ≥ −cS/2. For n large enough,
Ω1 ∩ Ω2 ⊂ ΩSn , and

P(Ωc
Sn) ≤ P(Ωc

1) + P(Ωc
2) ≤ c̃n−k. (10)

Gathering (9) and (10), we finally obtain for n large enough that P(Ωc
k) ≤ c2n

−k, where
c2 is a constant depending on B, |β0|1 and s.

2 Classical results
In this appendix, some classical technical lemmas and a theorem needed for the proofs
of the two main theorems of the chapter, are listed. We do not give the proofs of these
well-known results but we give the references where to find their proofs.
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2.1 A Cauchy-Schwarz Inequality
The following lemma gives a useful inequality concerning integrals with respect to the
counting process N .

Lemma 2.1 (Cauchy-Schwarz). For all function g bounded on [0, τ ],

N(τ)
∫ τ2

τ1
g2(s)dN(s) ≥

( ∫ τ2

τ1
g(s)dN(s)

)2
, 0 ≤ τ1 ≤ τ2 ≤ τ

We refer to Bouaziz et al. (2013) for the proof of this lemma.

2.2 Young Inequality
The following lemma provides an inequality that bounds a norm of the convolution prod-
uct of two functions by a product of norms of each function.

Lemma 2.2 (Young Inequality). Let p, q ∈ [1,+∞) such that 1/p+1/q ≥ 1. If s ∈ Lp(R)
and t ∈ Lq(R), then s and t are convolable. Moreover, if 1/r = 1/p + 1/q − 1, then
f ∗ g ∈ Lr(R) and

||s ∗ t||r ≤ ||s||p||t||q

This convolution inequality is proved in Hirsch and Lacombe (1999) (Theorem 3.4
p.149).

2.3 Talagrand Inequality
The following Talagrand Inequality is a concentration inequality that allows to control
the supremum of an empirical process.

Theorem 2.3 (Talagrand Inequality). Let ξ1, ..., ξn be independent random values, and
let

νn,ξ(f) = 1
n

n∑
i=1
{f(ξi)− E[f(ξi)]}.

Then, for a countable class of functions F uniformly bounded and ε > 0, we have

E

sup
f∈F

ν2
n,ξ(f)− 2(1 + 2ε2)H2


+

 ≤ 4
d

(
W

n
e−dε2 nH2

W + 98M2

dn2ϕ2(ε)e−
2dϕ(ε)ε
τ

√
2

nH
M

)
,

with ϕ(ε) =
√

1 + ε2 − 1, d = 1/6 and

sup
f∈F
||f ||∞ ≤M, E

[
sup
f∈F
|νn,ξ(f)|

]
≤ H, sup

f∈F

1
n

n∑
i=1

Var[f(ξ)] ≤ W.

This theorem is a useful corollary from the classical Talagrand established by Tala-
grand (1996). The proof of Theorem 2.3 can be found in Comte et al. (2008) (Lemma
6.1). The proof of the theorem follows from a concentration Inequality in Klein and Rio
(2005) and arguments that can be found in Birgé and Massart (1998).
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2.4 A classical inequality: the Bürkholder Inequality
The last technical result is a Bürkholder Inequality that gives a norm relation between a
martingale and its optional process. We refer to Liptser and Shiryayev (1989) p.75, for
the proof of this result.

Theorem 2.4 (Bürkholder Inequality). If M = (Mt,Ft)t≥0 is a martingale, then there
are universal constants γb and κb (independent of M) such that for every t ≥ 0

γb||
√

[M ]t||2 ≤ ||Mt||2 ≤ κb||
√

[M ]t||2,

where [M ]t is the quadratic variation of Mt.

This theorem is used to prove Lemma 6.5 and in the oracle inequalities of Theorem 4.1,
the constants depend on κb.

References
L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential bounds
and rates of convergence. Bernoulli, 4(3):329–375, 1998.

O. Bouaziz, F. Comte, and A. Guilloux. Nonparametric estimation of the intensity func-
tion of a recurrent event process. Statistica Sinica, 23(2):635–665, 2013.

F. Comte, J. Dedecker, and M.L. Taupin. Adaptive density deconvolution with dependent
inputs. Mathematical Methods of Statistics, 17(2):87–112, 2008.

F. Hirsch and G. Lacombe. Elements of functional analysis, volume 192. Springer, 1999.

T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes.
The Annals of Probability, 33(3):1060–1077, 2005.

R. Sh. Liptser and A. N. Shiryayev. Theory of martingales, volume 49 of Mathematics
and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht,
1989. ISBN 0-7923-0395-4. URL http://dx.doi.org/10.1007/978-94-009-2438-3.
Translated from the Russian by K. Dzjaparidze [Kacha Dzhaparidze].

M. Talagrand. New concentration inequalities in product spaces. Inventiones mathemat-
icae, 126(3):505–563, 1996.

8

http://dx.doi.org/10.1007/978-94-009-2438-3

	Technical lemmas
	Classical results

